Bibcode
Cubas Armas, M.; Asensio Ramos, A.; Socas-Navarro, H.
Referencia bibliográfica
Astronomy and Astrophysics
Fecha de publicación:
11
2020
Revista
Número de citas
6
Número de citas referidas
6
Descripción
Aims: We report the results of a novel determination of the solar oxygen abundance using spatially resolved observations and inversions. We seek to derive the photospheric solar oxygen abundance with a method that is robust against uncertainties in the model atmosphere.
Methods: We use observations with spatial resolution obtained at the Vacuum Tower Telescope to derive the oxygen abundance at 40 different spatial positions in granules and intergranular lanes. We first obtain a model for each location by inverting the Fe I lines with the NICOLE inversion code. These models are then integrated into a hierarchical Bayesian model that is used to infer the most probable value for the oxygen abundance that is compatible with all the observations. The abundance is derived from the [O I] forbidden line at 6300 Å taking into consideration all possible nuisance parameters that can affect the abundance.
Results: Our results show good agreement in the inferred oxygen abundance for all the pixels analyzed, demonstrating the robustness of the analysis against possible systematic errors in the model. We find a slightly higher oxygen abundance in granules than in intergranular lanes when treated separately (log(∊O) = 8.83 ± 0.02 vs. log(∊O) = 8.76 ± 0.02), which is a difference of approximately 2-σ. This tension suggests that some systematic errors in the model or the radiative transfer still exist but are small. When taking all pixels together, we obtain an oxygen abundance of log(∊O) = 8.80 ± 0.03, which is compatible with both granules and lanes within 1-σ. The spread of results is due to both systematic and random errors.
Proyectos relacionados
Magnestismo Solar y Estelar
Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas
Tobías
Felipe García
Magnetismo, Polarización y Transferencia Radiativa en Astrofísica
Los campos magnéticos están presentes en todos los plasmas astrofísicos y controlan la mayor parte de la variabilidad que se observa en el Universo a escalas temporales intermedias. Se encuentran en estrellas, a lo largo de todo el diagrama de Hertzsprung-Russell, en galaxias, e incluso quizás en el medio intergaláctico. La polarización de la luz
Tanausú del
Pino Alemán