Bibcode
Simón-Díaz, S.; Maíz Apellániz, J.; Lennon, D. J.; González Hernández, J. I.; Allende Prieto, C.; Castro, N.; de Burgos, A.; Dufton, P. L.; Herrero, A.; Toledo-Padrón, B.; Smartt, S. J.
Referencia bibliográfica
Astronomy and Astrophysics
Fecha de publicación:
2
2020
Revista
Número de citas
30
Número de citas referidas
25
Descripción
Context. It has recently been proposed that LB-1 is a binary system at 4 kpc consisting of a B-type star of 8 M☉ and a massive stellar black hole (BH) of 70 M☉. This finding challenges our current theories of massive star evolution and formation of BHs at solar metallicity.
Aims: Our objective is to derive the effective temperature, surface gravity, and chemical composition of the B-type component in order to determine its nature and evolutionary status and, indirectly, to constrain the mass of the BH.
Methods: We use the non-LTE stellar atmosphere code FASTWIND to analyze new and archival high-resolution data.
Results: We determine (Teff, log g) values of (14 000 ± 500 K, 3.50 ± 0.15 dex) that, combined with the Gaia parallax, imply a spectroscopic mass, from log g, of 3.2+2.1-1.9 M☉ and an evolutionary mass, assuming single star evolution, of 5.2+0.3-0.6 M☉. We determine an upper limit of 8 km s-1 for the projected rotational velocity and derive the surface abundances; we find the star to have a silicon abundance below solar, and to be significantly enhanced in nitrogen and iron and depleted in carbon and magnesium. Complementary evidence derived from a photometric extinction analysis and Gaia yields similar results for Teff and log g and a consistent distance around 2 kpc.
Conclusions: We propose that the B-type star is a slightly evolved main sequence star of 3-5 M☉ with surface abundances reminiscent of diffusion in late B/A chemically peculiar stars with low rotational velocities. There is also evidence for CN-processed material in its atmosphere. These conclusions rely critically on the distance inferred from the Gaia parallax. The goodness of fit of the Gaia astrometry also favors a high-inclination orbit. If the orbit is edge-on and the B-type star has a mass of 3-5 M☉, the mass of the dark companion would be 4-5 M☉, which would be easier to explain with our current stellar evolutionary models.
Aims: Our objective is to derive the effective temperature, surface gravity, and chemical composition of the B-type component in order to determine its nature and evolutionary status and, indirectly, to constrain the mass of the BH.
Methods: We use the non-LTE stellar atmosphere code FASTWIND to analyze new and archival high-resolution data.
Results: We determine (Teff, log g) values of (14 000 ± 500 K, 3.50 ± 0.15 dex) that, combined with the Gaia parallax, imply a spectroscopic mass, from log g, of 3.2+2.1-1.9 M☉ and an evolutionary mass, assuming single star evolution, of 5.2+0.3-0.6 M☉. We determine an upper limit of 8 km s-1 for the projected rotational velocity and derive the surface abundances; we find the star to have a silicon abundance below solar, and to be significantly enhanced in nitrogen and iron and depleted in carbon and magnesium. Complementary evidence derived from a photometric extinction analysis and Gaia yields similar results for Teff and log g and a consistent distance around 2 kpc.
Conclusions: We propose that the B-type star is a slightly evolved main sequence star of 3-5 M☉ with surface abundances reminiscent of diffusion in late B/A chemically peculiar stars with low rotational velocities. There is also evidence for CN-processed material in its atmosphere. These conclusions rely critically on the distance inferred from the Gaia parallax. The goodness of fit of the Gaia astrometry also favors a high-inclination orbit. If the orbit is edge-on and the B-type star has a mass of 3-5 M☉, the mass of the dark companion would be 4-5 M☉, which would be easier to explain with our current stellar evolutionary models.
Proyectos relacionados
Propiedades Físicas y Evolución de Estrellas Masivas
Las estrellas masivas son objetos claves para la Astrofísica. Estas estrellas nacen con más de 8 masas solares, lo que las condena a morir como Supernovas. Durante su rápida evolución liberan, a través de fuertes vientos estelares, gran cantidad de material procesado en su núcleo y, en determinadas fases evolutivas, emiten gran cantidad de
Sergio
Simón Díaz
Pruebas Observacionales de los Procesos de Nucleosíntesis en el Universo
Recientemente se han llevado a cabo varios análisis espectroscópicos de estrellas con planetas. Uno de los resultados más relevantes ha sido descubrir que las estrellas con planetas son en promedio más metálicas que las estrellas del mismo tipo espectral sin planetas conocidos (Santos, Israelian & Mayor 2001, A&A, 373, 1019; 2004, A&A, 415, 1153)
Garik
Israelian
Abundancias Químicas en Estrellas
La espectroscopía de estrellas nos permite determinar las propiedades y composiciones químicas de las mismas. A partir de esta información para estrellas de diferente edad en la Vía Láctea es posible reconstruir la evolución química de la Galaxia, así como el origen de los elementos más pesados que el boro, forjados principalmente en los interiores
Carlos
Allende Prieto