El descubrimiento de que las galaxias mas masivas eran mucho mas compactas en el pasado que las galaxias que tienen igual masa hoy, representa uno de los mayores retos para los escenarios actuales que describen la formacion de las galaxias. Una de las ideas que se han sugerido es que estas galaxias compactas se han ido transformado con el tiempo en los núcleos de las galaxias mas masivas que vemos hoy en dia. Nuestro grupo ha llevado a cabo dos estudios paralelos para por un lado tratar de identificar galaxias masivas y compactas que pudieran haber sobrevivido intactas desde su formación inicial y por lo tanto estudiar sus propiedades y otro estudio para explorar la evolución estructural y dinámica de estos objetos a medida que el tiempo transcurre. Hemos encontrado que hoy en dia la poblacion de galaxias masivas y compactas es extremadamente pequeña (<0.03% de las galaxias masivas) y sorprendentemente son objetos relativamente jovenes. Estos resultados sugieren que las galaxias mas masivas se forman siempre de manera compacta y luego evolucionan hasta formar la poblacion actual. Ademas, este analisis nos indica que la evolucion de estos objetos compactos y lejanos debe ser muy rapida pues ya no es posible encontrar ninguno de estas galaxias en la actualidad. Por otro lado, nuestro análisis de la evolución dinamica de los objetos mas masivos es compatible con un escenario donde el halo de materia oscura ya estaba formado en el pasado y el enorme crecimiento observado en tamaño de estos objetos solo se ha producido en la distribución de sus estrellas. En conjunto, nuestros resultados parecen indicar que estas galaxias masivas se formaron en un estallido muy intenso de formación estelar y luego han evolucionado hasta convertirse en el nucleo de las galaxias mas masivas del universo cercano a traves de la acrecion de otras galaxias satelites mas pequeñas.
Fecha de publicación
Referencias
Trujillo, I. et al. (2009). ApJL 692, 118
Otras noticias relacionadas
-
En los años 90, el telescopio espacial COBE descubrió que no toda la emisión de microondas de nuestra galaxia se comportaba como esperábamos. Parte de la señal captada por el satélite provenía de un desconocido proceso de emisión; éste trazaba espacialmente la distribución del polvo Galáctico, pero emitía con mayor intensidad en el rango de las microondas. Desde entonces este proceso recibe el nombre de “emisión anómala de microondas” o AME, por sus siglas en inglés. Actualmente, la principal hipótesis para explicar el origen de la AME se basa en la emisión de pequeñas moléculas de polvoFecha de publicación
-
El campo magnético de la cromosfera solar desempeña un papel clave en el calentamiento de la atmósfera solar exterior y en la acumulación y liberación repentina de energía en las erupciones solares. Sin embargo, cartografiar el vector del campo magnético en la cromosfera solar es una tarea muy difícil porque el campo magnético deja sus huellas en la polarización muy tenue de la luz, la cual no es nada fácil medir e interpretar. Analizamos las observaciones espectropolarimétricas obtenidas con el “Chromospheric LAyer Spectro-Polarimeter” (CLASP) a bordo de un cohete sonda. Este experimentoFecha de publicación
-
El modelo jerárquico de la evolución de las galaxias sugiere que las fusiones de galaxias tienen un impacto sustancial en los intrincados procesos que impulsan el ensamblaje de la masa estelar dentro de una galaxia. Sin embargo, medir con precisión la contribución de las fusiones a la masa estelar total de una galaxia y su equilibrio con la formación estelar in situ plantea un desafío persistente, ya que no es directamente observable ni se infiere fácilmente a partir de datos observacionales. Utilizando datos de MaNGA, presentamos predicciones para la fracción de masa estelar que se originaFecha de publicación