Para entender la relación entre la formación de barras y el entorno es necesario distinguir entre los efectos que las interacciones producen en los discos y como estas modifican la consiguiente formación de barras. Con este objetivo hemos obtenido la fracción de galaxias barradas en tres entornos distintos que van desde entornos de campo hasta entornos de cúmulo como Virgo y Coma, además cubriendo un rango de luminosidades (o equivalentemente de masas) sin precedentes. Hemos confirmado que la fracción de barras depende fuertemente de la luminosidad de las galaxias. Tambien hemos demostrado que la diferencia entre la distribución de la fracción de barras en función de la luminosidad (y de la masa) en el campo y en el cúmulo de Coma son estadísticamente diferentes, siendo el cúmulo de Virgo un caso intermedio. La fracción de galaxias barradas muestra un máximo de aproximadamente un 50% a Mr~-20.5 en cúmulos, mientras que el pico se desplaza a Mr~-19 en el campo. Nosotros interpretamos este resultado como una variación en el efecto que el entorno tiene sobre la formación de las barras con la luminosidad. Especulamos que los discos brillantes son suficientemente estables contra las interacciones como para mantener su estructura fria, y por tanto las interacciones son capaces de provocar la formación de barras. En el caso de galaxias más débiles, las interacciones se vuelven lo bastante importantes como para calentar o incluso destruir los discos, y por tanto evitar la formación de barras. Por ultimo, señalamos tambien que el debate sobre si la fracción de barras depende o no del entorno se podría resolver teniendo en cuenta los diferentes rangos de luminosidad que se han usado en estudios anteriores.
Fecha de publicación
Referencias
2012ApJ, 761L, 6M
Otras noticias relacionadas
-
Las propiedades de las supergigantes azules son fundamentales para determinar el final de la secuencia principal, una fase en la que las estrellas masivas pasan la mayor parte de su vida. Se ha propuesto que la ausencia de estrellas de rotación rápida por debajo de 21.000K, temperatura en torno a la cual los vientos estelares cambian de comportamiento, se debe a una mayor pérdida de masa, que haría frenar a las estrellas. Otra posibilidad es que la falta de estrellas de rotación rápida se deba a que las estrellas alcanzan el final de la secuencia principal. En este trabajo combinamosFecha de publicación
-
El desarrollo de la última generación de telescopios tipo Cherenkov (IACT de sus siglas en inglés) en las últimas décadas ha llevado al descubrimiento de nuevos fenómenos astrofísicos extremos en el rango de rayos gamma de muy alta energía (VHE de sus siglas en inglés, E > 100 GeV). La astronomía multi-mensajero y temporal está inevitablemente conectada a la física de fuentes transitorias emisoras de rayos gamma VHE, que muestran explosiones o periodos eruptivos de manera inesperada e impredecible en diferentes escalas de tiempo. Estas fuentes transitorias comparten a menudo procesos físicosFecha de publicación
-
El campo magnético de la cromosfera solar desempeña un papel clave en el calentamiento de la atmósfera solar exterior y en la acumulación y liberación repentina de energía en las erupciones solares. Sin embargo, cartografiar el vector del campo magnético en la cromosfera solar es una tarea muy difícil porque el campo magnético deja sus huellas en la polarización muy tenue de la luz, la cual no es nada fácil medir e interpretar. Analizamos las observaciones espectropolarimétricas obtenidas con el “Chromospheric LAyer Spectro-Polarimeter” (CLASP) a bordo de un cohete sonda. Este experimentoFecha de publicación