Para entender la relación entre la formación de barras y el entorno es necesario distinguir entre los efectos que las interacciones producen en los discos y como estas modifican la consiguiente formación de barras. Con este objetivo hemos obtenido la fracción de galaxias barradas en tres entornos distintos que van desde entornos de campo hasta entornos de cúmulo como Virgo y Coma, además cubriendo un rango de luminosidades (o equivalentemente de masas) sin precedentes. Hemos confirmado que la fracción de barras depende fuertemente de la luminosidad de las galaxias. Tambien hemos demostrado que la diferencia entre la distribución de la fracción de barras en función de la luminosidad (y de la masa) en el campo y en el cúmulo de Coma son estadísticamente diferentes, siendo el cúmulo de Virgo un caso intermedio. La fracción de galaxias barradas muestra un máximo de aproximadamente un 50% a Mr~-20.5 en cúmulos, mientras que el pico se desplaza a Mr~-19 en el campo. Nosotros interpretamos este resultado como una variación en el efecto que el entorno tiene sobre la formación de las barras con la luminosidad. Especulamos que los discos brillantes son suficientemente estables contra las interacciones como para mantener su estructura fria, y por tanto las interacciones son capaces de provocar la formación de barras. En el caso de galaxias más débiles, las interacciones se vuelven lo bastante importantes como para calentar o incluso destruir los discos, y por tanto evitar la formación de barras. Por ultimo, señalamos tambien que el debate sobre si la fracción de barras depende o no del entorno se podría resolver teniendo en cuenta los diferentes rangos de luminosidad que se han usado en estudios anteriores.
Fecha de publicación
Referencias
2012ApJ, 761L, 6M
Otras noticias relacionadas
-
En los años 90, el telescopio espacial COBE descubrió que no toda la emisión de microondas de nuestra galaxia se comportaba como esperábamos. Parte de la señal captada por el satélite provenía de un desconocido proceso de emisión; éste trazaba espacialmente la distribución del polvo Galáctico, pero emitía con mayor intensidad en el rango de las microondas. Desde entonces este proceso recibe el nombre de “emisión anómala de microondas” o AME, por sus siglas en inglés. Actualmente, la principal hipótesis para explicar el origen de la AME se basa en la emisión de pequeñas moléculas de polvoFecha de publicación
-
La formación y evolución del disco de nuestra galaxia, la Vía Láctea, sigue siendo un enigma en la astronomía. En particular, la relación entre el disco grueso y el disco delgado —dos componentes clave de la Vía Láctea— aún no está clara. Entender las propiedades químicas y dinámicas de las estrellas en estos discos es crucial, especialmente en las regiones donde sus características se superponen, como alrededor de [Fe/H] ~ -0.7, que marca el extremo pobre en metales del disco delgado, superior al del disco grueso. Esto suele interpretarse como un indicio de que el disco delgado se formó enFecha de publicación
-
El sistema transitorio Swift J1727.8-162 es el miembro más reciente de la familia de agujeros negros en binarias de rayos-X descubierto hasta la fecha. Están formados por un agujero negro y una estrella de baja masa a la que arranca gas, que forma un disco de acreción antes de ser finalmente acretado por el agujero negro. Debido a su elevada temperatura, el disco emite luz hasta el rango de los rayos-X, brillando con especial intensidad durante épocas conocidas como erupciones. Este nuevo estudio, publicado apenas unos meses después del descubrimiento, presenta 20 épocas de espectroscopíaFecha de publicación