Bibcode
Kostik, R.; Khomenko, E.
Referencia bibliográfica
Astronomy and Astrophysics, Volume 559, id.A107, 10 pp.
Fecha de publicación:
11
2013
Revista
Número de citas
22
Número de citas referidas
21
Descripción
Aims: We study the properties of waves in a facular region of
moderate strength in the photosphere and chromosphere. Our aim is to
statistically analyse the wave periods, power, and phase relations as a
function of the magnetic field strength and inclination. Methods:
Our work is based on observations obtained at the German Vacuum Tower
Telescope (Observatorio del Teide, Tenerife) using two different
instruments: the Triple Etalon SOlar Spectrometer (TESOS) in the Ba ii
4554 Å line to measure velocity and intensity variations through
the photosphere and, simultaneously, the Tenerife Infrared Polarimeter
(TIP-II), in the Fe i 1.56 μm lines to measure the Stokes parameters
and magnetic field strength in the lower photosphere. Additionally, we
use the simultaneous broad-band filtergrams in the Ca ii H line to
obtain information about intensity oscillations in the chromosphere. Results: We find several clear trends in the oscillation behaviour:
(i) the period of oscillation increases by 15-20% with the magnetic
field increasing from 500 to 1500 G. (ii) The temperature-velocity phase
shifts show a strikingly different distribution in the facular region
compared to the quiet region, a significant number of cases in the range
from - 180° to 180° is detected in the facula. (iii) The most
powerful chromospheric Ca ii H intensity oscillations are observed at
locations with strong magnetic fields (1.3-1.5 kG) inclined by 10-12
degrees, as a result of upward propagating waves with rather low phase
speeds, and temperature-velocity phase shifts between 0° and
90°. (iv) The power of the photospheric velocity oscillations from
the Ba ii line increases linearly with decreasing magnetic field
inclination, reaching its maximum at strong field locations.
Proyectos relacionados
Magnestismo Solar y Estelar
Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas
Tobías
Felipe García