Neutron decay anomaly, neutron stars, and dark matter

Bastero-Gil, Mar; Huertas-Roldán, Teresa; Santos, Daniel
Referencia bibliográfica

Physical Review D

Fecha de publicación:
10
2024
Número de autores
3
Número de autores del IAC
1
Número de citas
4
Número de citas referidas
1
Descripción
The discrepancies in different measurements of the lifetime of isolated neutrons could be resolved by considering an extra neutron decay channel into dark matter, with a branching ratio of the order of O(1%). Although the decay channel into a dark fermion χ plus visible matter has already been experimentally excluded, a dark decay with either a scalar or dark photon in the final state still remains a possibility. In particular, a model with a fermion mass mχ≈1 GeV and a scalar mϕ≈O(MeV) could provide not only the required branching ratio to explain the anomaly but also a good dark matter (DM) candidate with the right thermal abundance today. Although the interaction DM neutron will affect the formation of neutron stars, the combined effect of the dark matter self-interactions mediated by the light scalar and an effective repulsive interaction with the neutrons induced by the scalar-Higgs coupling would allow heavy enough neutron stars. Combining the constraints from neutron lifetime, dark matter abundance, neutron stars, Higgs physics, and big bang nucleosynthesis, we can restrict the light scalar mass to be in the range 2me<mϕ<2me+0.0375 MeV.
Proyectos relacionados
Project Image
Nucleosíntesis y procesos moleculares en los últimos estados de la evolución estelar
Las estrellas de masa baja e intermedia (M < 8 masas solares, Ms) representan la mayoría de estrellas en el Cosmos y terminan sus vidas en la Rama Asintótica de las Gigantes (AGB) - justo antes de formar Nebulosas Planetarias (NPs) - cuando experimentan procesos nucleosintéticos y moleculares complejos. Las estrellas AGB son importantes
Domingo Aníbal
García Hernández