LensWatch. II. Improved Photometry and Time-delay Constraints on the Strongly Lensed Type Ia Supernova 2022qmx ("SN Zwicky") with Hubble Space Telescope Template Observations

Larison, C.; Pierel, J. D. R.; Newman, M. J. B.; Jha, S. W.; Gilman, D.; Hayes, E. E.; Agrawal, A.; Arendse, N.; Birrer, S.; Bronikowski, M.; Chakrabarti, S.; Della Costa, J. M.; Coulter, D. A.; Courbin, F.; Dalrymple, K. A.; Dhawan, S.; Diego, J. M.; Gall, C.; Goobar, A.; Hjorth, J.; Huang, X.; Johansson, J.; Mao, S.; Marques-Chaves, R.; Mazzali, P. A.; More, A.; Moustakas, L. A.; Pérez-Fournon, I.; Petrushevska, T.; Poidevin, F.; Rest, A.; Shajib, A. J.; Shirley, R.; Strolger, L. G.; Suyu, S. H.; Treu, T.; Zenati, Y.
Referencia bibliográfica

The Astrophysical Journal

Fecha de publicación:
2
2025
Número de autores
37
Número de autores del IAC
2
Número de citas
0
Número de citas referidas
0
Descripción
Strongly lensed supernovae (SNe) are a rare class of transient that can offer tight cosmological constraints that are complementary to methods from other astronomical events. We present a follow-up study of one recently discovered strongly lensed SN, the quadruply imaged type Ia SN 2022qmx (aka "SN Zwicky"), at z = 0.3544. We measure updated, template-subtracted photometry for SN Zwicky and derive improved time delays and magnifications. This is possible because SNe are transient, fading away after reaching their peak brightness. Specifically, we measure point-spread-function photometry for all four images of SN Zwicky in three Hubble Space Telescope WFC3/UVIS passbands (F475W, F625W, and F814W) and one WFC3/IR passband (F160W), with template images taken ∼11 months after the epoch in which the SN images appear. We find consistency to within 2σ between lens-model-predicted time delays (≲1 day) and measured time delays with HST colors (≲2 days), including the uncertainty from chromatic microlensing that may arise from stars in the lensing galaxy. The standardizable nature of SNe Ia allows us to estimate absolute magnifications for the four images, with images A and C being elevated in magnification compared to lens model predictions by about 6σ and 3σ, respectively, confirming previous work. We show that millilensing or differential dust extinction is unable to explain these discrepancies, and we find evidence for the existence of microlensing in images A, C, and potentially D that may contribute to the anomalous magnification.