Proffitt, Charles R.; Jin, Harim; Daflon, Simone; Lennon, Daniel J.; Langer, Norbert; Cunha, Katia; Monroe, Talawanda
Referencia bibliográfica
The Astrophysical Journal
Fecha de publicación:
6
2024
Revista
Número de citas
1
Número de citas referidas
0
Descripción
New boron abundances or upper limits have been determined for eight early B stars in the young Galactic open cluster NGC 3293, using UV spectra obtained by the Hubble Space Telescope Cosmic Origins Spectrograph. With previous observations, there are now 18 early B stars in this cluster with boron measurements. Six of the newly observed stars have projected rotational velocities greater than 200 km s‑1, allowing new constraints on rotationally driven mixing in main-sequence stars. When comparing to synthetic model populations, we find that the majority of our sample stars agree well with the predicted trends of stronger boron depletion for larger rotation and for larger mass or luminosity. Based on those, a smaller than the canonical rotational mixing efficiency (f c ≈ 0.0165 versus the more standard value of 0.033) appears to be favored. In addition, the five mostly slowly rotating stars, when considered as a group, tend to show more boron depletion than expected from rotational mixing, and we speculate that most or all of these originate from binary mergers. * Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with proposal GO-14673.