Las binarias de rayos-X poco masivas son sistemas formados por dos componentes: un objeto compacto (que puede ser una estrella de neutrones o un agujero negro de masa estelar) y una estrella de masa igual o inferior a la del sol. Ambos objetos se encuentran lo bastante cerca como para que la gravedad arranque material de la estrella compañera y lo haga caer sobre el objeto compacto formando un disco de acreción. De hecho, la cercanía de ambos objetos (típicamente tres veces menor que la órbita de Mercurio) hace imposible resolverlos espacialmente incluso con el telescopio más potente. Aquila X-1 (Aql X-1) es una binaria de rayos-X clásica que alberga una estrella de neutrones como objeto compacto. Fue descubierta hace más de 40 años y desde entonces alterna etapas de quietud con violentas erupciones en las que su disco de acrecimiento se calienta y aumenta su luminosidad varios órdenes de magnitud. No obstante, los parámetros fundamentales de este sistema clásico han permanecido ocultos hasta ahora. El motivo es que, para realizar un estudio completo, debe observarse el sistema durante la quietud, pues la estrella compañera no puede detectarse durante la erupción debido a la intensa emisión del disco de acreción. Además, en el caso particular de Aql X-1, hay una estrella (sin ninguna relación con el sistema) prácticamente en la misma línea de visión (a 0.4 arcsec) que había hecho fracasar intentos anteriores de obtener espectros no contaminados. Haciendo uso del telescopio de 8 metros VLT (Very Large Telescope), equipado con un sistema de óptica adaptativa y con el instrumento SINFONI (un espectrógrafo infrarrojo de campo integral), hemos conseguido no sólo separar la estrella contaminante y Aql X-1, sino obtener espectros independientes. De ellos obtenemos: i) que el sistema se encuentra a 6±2 Kpc de nosotros (mientras la contaminante está a 2-4 Kpc), ii) que su estrella compañera (de 0.76 masas solares) tiene una velocidad orbital proyectada de K2=136±4 km/s y iii) que la inclinación orbital del sistema respecto a nuestra línea de visión debe estar restringida al rango 36º<i<47º.
Fecha de publicación
Referencias
Otras noticias relacionadas
-
El modelo jerárquico de la evolución de las galaxias sugiere que las fusiones de galaxias tienen un impacto sustancial en los intrincados procesos que impulsan el ensamblaje de la masa estelar dentro de una galaxia. Sin embargo, medir con precisión la contribución de las fusiones a la masa estelar total de una galaxia y su equilibrio con la formación estelar in situ plantea un desafío persistente, ya que no es directamente observable ni se infiere fácilmente a partir de datos observacionales. Utilizando datos de MaNGA, presentamos predicciones para la fracción de masa estelar que se originaFecha de publicación
-
Las estrellas masivas, aquellas que tienen más de diez veces la masa de nuestro Sol, son el origen de la mayoría de los elementos de la tabla periódica, dando forma a la composición morfológica y química de sus galaxias anfitrionas. Sin embargo, el origen de las más luminosas y calientes entre ellas, conocidas como 'supergigantes azules', ha sido debatido durante décadas. Las supergigantes azules son estrellas enigmáticas. Primero, son numerosas, a pesar de que la física estelar convencional predice que vivan solo brevemente. Segundo, típicamente se encuentran aisladas, a pesar de que laFecha de publicación
-
El desarrollo de la última generación de telescopios tipo Cherenkov (IACT de sus siglas en inglés) en las últimas décadas ha llevado al descubrimiento de nuevos fenómenos astrofísicos extremos en el rango de rayos gamma de muy alta energía (VHE de sus siglas en inglés, E > 100 GeV). La astronomía multi-mensajero y temporal está inevitablemente conectada a la física de fuentes transitorias emisoras de rayos gamma VHE, que muestran explosiones o periodos eruptivos de manera inesperada e impredecible en diferentes escalas de tiempo. Estas fuentes transitorias comparten a menudo procesos físicosFecha de publicación