Hemos usado la cámara ACS del telescopio espacial para obtener observaciones profundas de un campo de M32 y otro de M31 para determinar la historia de formación estelar (HFE) de M32 a partir de sus estrellas resueltas. Encontramos que as estrellas de entre 2 y 5 mil millones de años contribuyen al 40% de la masa de M32, mientras que el 55% de la masa de M32 corresponde a estrellas más viejas de 5 mil millones de años. La HFE indica además la presencia de estrellas jóvenes (menos de 2 mil millones de años) y pobre en metales, sugeriendo que las binarias primordiales congribuyen al 2% de la masa. El restante 3% de la masa de M32 proviene de estrellas jóvenes ricas en metales. La HFE de M31 obtenida del campo de fondo muestra que la mayoria de sus estrellas son viejas, con un 95% de la masa de la galaxia formada hace entre 5 y 14 mil millones de años. Está compuesta por dos poblaciones dominantes: 30% de su masa en una población de entre 5 y 8 mil millones de años y el 65% de entre 8 y 4 mil millones de años. Nuestros resultados sugieren que la población del disco interno y el esferoide de M32 son indistinguibles de las polbaciones del disco externo. Asumiendo que la edad media de M31 es entre 5 y 9 mil millones de años, nuestros resultados favorencen el escenario de formación dentro-fuera para el disco de M31.
Fecha de publicación
Referencias
Otras noticias relacionadas
-
Hace décadas que se vio la necesidad de estudiar otras estrellas para comprender el pasado, el presente y el futuro del Sol. Un aspecto importante que se ha investigado es la actividad magnética de las estrellas, cuyos mecanismos aún no podemos comprender del todo. De hecho, el origen de los ciclos magnéticos estelares o la dependencia de la actividad magnética con las propiedades estelares no se comprenden del todo. Este conocimiento no sólo mejora nuestra comprensión de la física implicada en la evolución estelar, sino que también afecta al estudio del Sol para predecir mejor los eventosFecha de publicación
-
Uno de los desafíos clave en astronomía es medir distancias precisas a los objetos celestes. Conocer las distancias es crucial ya que nos permite medir propiedades físicas como el tamaño, la masa y la luminosidad. Dado que no podemos salir y usar una cinta métrica, se han desarrollado una variedad de enfoques diferentes. Muchos de estos enfoques se basan en el uso de "velas estándar". Las velas estándar son objetos (por ejemplo, estrellas o supernovas) de los que conocemos su brillo "verdadero" intrínseco. Una vez que sabemos esto, entonces su brillo observado en comparación con su brilloFecha de publicación
-
Las propiedades de las supergigantes azules son fundamentales para determinar el final de la secuencia principal, una fase en la que las estrellas masivas pasan la mayor parte de su vida. Se ha propuesto que la ausencia de estrellas de rotación rápida por debajo de 21.000K, temperatura en torno a la cual los vientos estelares cambian de comportamiento, se debe a una mayor pérdida de masa, que haría frenar a las estrellas. Otra posibilidad es que la falta de estrellas de rotación rápida se deba a que las estrellas alcanzan el final de la secuencia principal. En este trabajo combinamosFecha de publicación