Reversal-free Ca II H profiles: a challenge for solar chromosphere modeling in quiet inter-network

Rezaei, R.; Bruls, J. H. M. J.; Schmidt, W.; Beck, C.; Kalkofen, W.; Schlichenmaier, R.
Referencia bibliográfica

Astronomy and Astrophysics, Volume 484, Issue 2, 2008, pp.503-509

Fecha de publicación:
6
2008
Número de autores
6
Número de autores del IAC
1
Número de citas
31
Número de citas referidas
30
Descripción
Aims: We study chromospheric emission to understand the temperature stratification in the solar chromosphere. Methods: We observed the intensity profile of the Ca II H line in a quiet Sun region close to the disk center at the German Vacuum Tower Telescope. We analyze over 105 line profiles from inter-network regions. For comparison with the observed profiles, we synthesize spectra for a variety of model atmospheres with a non local thermodynamic equilibrium (NLTE) radiative transfer code. Results: A fraction of about 25% of the observed Ca II H line profiles do not show a measurable emission peak in H2v and H2r wavelength bands (reversal-free). All of the chosen model atmospheres with a temperature rise fail to reproduce such profiles. On the other hand, the synthetic calcium profile of a model atmosphere that has a monotonic decline of the temperature with height shows a reversal-free profile that has much lower intensities than any observed line profile. Conclusions: The observed reversal-free profiles indicate the existence of cool patches in the interior of chromospheric network cells, at least for short time intervals. Our finding is not only in conflict with a full-time hot chromosphere, but also with a very cool chromosphere as found in some dynamic simulations.
Proyectos relacionados
Imagen del Proyecto
Magnestismo Solar y Estelar
Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas
Tobías
Felipe García