Bibcode
Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burenin, R.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chiang, H. C.; Christensen, P. R.; Churazov, E.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Elsner, F.; Enßlin, T. A.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Harrison, D. L.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Hornstrup, A.; Hovest, W.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Macías-Pérez, J. F. et al.
Referencia bibliográfica
Astronomy and Astrophysics, Volume 596, id.A104, 12 pp.
Fecha de publicación:
12
2016
Revista
Número de citas
41
Número de citas referidas
36
Descripción
Although infrared (IR) overall dust emission from clusters of galaxies
has been statistically detected using data from the Infrared
Astronomical Satellite (IRAS), it has not been possible to sample the
spectral energy distribution (SED) of this emission over its peak, and
thus to break the degeneracy between dust temperature and mass. By
complementing the IRAS spectral coverage with Planck satellite data from
100 to 857 GHz, we provide new constraints on the IR spectrum of thermal
dust emission in clusters of galaxies. We achieve this by using a
stacking approach for a sample of several hundred objects from the
Planck cluster sample. This procedure averages out fluctuations from the
IR sky, allowing us to reach a significant detection of the faint
cluster contribution. We also use the large frequency range probed by
Planck, together with component-separation techniques, to remove the
contamination from both cosmic microwave background anisotropies and the
thermal Sunyaev-Zeldovich effect (tSZ) signal, which dominate at ν
≤ 353 GHz. By excluding dominant spurious signals or systematic
effects, averaged detections are reported at frequencies 353 GHz ≤
ν ≤ 5000 GHz. We confirm the presence of dust in clusters of
galaxies at low and intermediate redshifts, yielding an SED with a shape
similar to that of the Milky Way. Planck's resolution does not allow us
to investigate the detailed spatial distribution of this emission (e.g.
whether it comes from intergalactic dust or simply the dust content of
the cluster galaxies), but the radial distribution of the emission
appears to follow that of the stacked SZ signal, and thus the extent of
the clusters. The recovered SED allows us to constrain the dust mass
responsible for the signal and its temperature.