Bibcode
Planck Collaboration; Abergel, A.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Dame, T. M.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Grenier, I. A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, T. R.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J. et al.
Referencia bibliográfica
Astronomy and Astrophysics, Volume 536, id.A21
Fecha de publicación:
12
2011
Revista
Número de citas
128
Número de citas referidas
121
Descripción
Planck has observed the entire sky from 30 GHz to 857GHz. The observed
foreground emission contains contributions from different phases of the
interstellar medium (ISM). We have separated the observed Galactic
emission into the different gaseous components (atomic, molecular and
ionised) in each of a number of Galactocentric rings. This technique
provides the necessary information to study dust properties (emissivity,
temperature, etc.), as well as other emission mechanisms as a function
of Galactic radius. Templates are created for various Galactocentric
radii using velocity information from atomic (neutral hydrogen) and
molecular (12CO) observations. The ionised template is
assumed to be traced by free-free emission as observed by WMAP, while
408 MHz emission is used to trace the synchrotron component. Gas
emission not traced by the above templates, namely "dark gas", as
evidenced using Planck data, is included as an additional template, the
first time such a component has been used in this way. These templates
are then correlated with each of the Planck frequency bands, as well as
with higher frequency data from IRAS and DIRBE along with radio data at
1.4 GHz. The emission per column density of the gas templates allows us
to create distinct spectral energy distributions (SEDs) per
Galactocentric ring and in each of the gaseous tracers from 1.4 GHz to
25 THz (12μm). The resulting SEDs allow us to explore the
contribution of various emission mechanisms to the Planck signal. Apart
from the thermal dust and free-free emission, we have probed the Galaxy
for anomalous (e.g., spinning) dust as well as synchrotron emission. We
find the dust opacity in the solar neighbourhood, τ/NH =
0.92 ± 0.05 × 10-25 cm2 at 250 μm,
with no significant variation with Galactic radius, even though the dust
temperature is seen to vary from over 25 K to under 14 K. Furthermore,
we show that anomalous dust emission is present in the atomic, molecular
and dark gas phases throughout the Galactic disk. Anomalous emission is
not clearly detected in the ionised phase, as free-free emission is seen
to dominate. The derived dust propeties associated with the dark gas
phase are derived but do not allow us to reveal the nature of this
phase. For all environments, the anomalous emission is consistent with
rotation from polycyclic aromatic hydrocarbons (PAHs) and, according to
our simple model, accounts for (25 ± 5)% (statistical) of the
total emission at 30 GHz.
Corresponding author: D. J. Marshall, e-mail:
douglas.marshall [at] irap.omp.eu (douglas[dot]marshall[at]irap[dot]omp[dot]eu)
Proyectos relacionados
Anisotropía del Fondo Cósmico de Microondas
El objetivo general de este proyecto es determinar y estudiar las variaciones espaciales y espectrales en la temperatura del Fondo Cósmico de Microondas y en su Polarización en un amplio rango de escalas angulares que van desde pocos minutos de arco hasta varios grados. Las fluctuaciones primordiales en la densidad de materia, que dieron origen a
Rafael
Rebolo López