Bibcode
Planck Collaboration; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.; Combet, C.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Gerbino, M.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hamann, J.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E. et al.
Referencia bibliográfica
Astronomy and Astrophysics, Volume 594, id.A11, 99 pp.
Fecha de publicación:
9
2016
Revista
Número de citas
830
Número de citas referidas
753
Descripción
This paper presents the Planck 2015 likelihoods, statistical
descriptions of the 2-point correlationfunctions of the cosmic microwave
background (CMB) temperature and polarization fluctuations that account
for relevant uncertainties, both instrumental and astrophysical in
nature. They are based on the same hybrid approach used for the previous
release, i.e., a pixel-based likelihood at low multipoles (ℓ< 30)
and a Gaussian approximation to the distribution of cross-power spectra
at higher multipoles. The main improvements are the use of more and
better processed data and of Planck polarization information, along with
more detailed models of foregrounds and instrumental uncertainties. The
increased redundancy brought by more than doubling the amount of data
analysed enables further consistency checks and enhanced immunity to
systematic effects. It also improves the constraining power of Planck,
in particular with regard to small-scale foreground properties. Progress
in the modelling of foreground emission enables the retention of a
larger fraction of the sky to determine the properties of the CMB, which
also contributes to the enhanced precision of the spectra. Improvements
in data processing and instrumental modelling further reduce
uncertainties. Extensive tests establish the robustness and accuracy of
the likelihood results, from temperature alone, from polarization alone,
and from their combination. For temperature, we also perform a full
likelihood analysis of realistic end-to-end simulations of the
instrumental response to the sky, which were fed into the actual data
processing pipeline; this does not reveal biases from residual low-level
instrumental systematics. Even with the increase in precision and
robustness, the ΛCDM cosmological model continues to offer a very
good fit to the Planck data. The slope of the primordial scalar
fluctuations, ns, is confirmed smaller than unity at more
than 5σ from Planck alone. We further validate the robustness of
the likelihood results against specific extensions to the baseline
cosmology, which are particularly sensitive to data at high multipoles.
For instance, the effective number of neutrino species remains
compatible with the canonical value of 3.046. For this first detailed
analysis of Planck polarization spectra, we concentrate at high
multipoles on the E modes, leaving the analysis of the weaker B modes to
future work. At low multipoles we use temperature maps at all Planck
frequencies along with a subset of polarization data. These data take
advantage of Planck's wide frequency coverage to improve the separation
of CMB and foreground emission. Within the baseline ΛCDM
cosmology this requires τ = 0.078 ± 0.019 for the
reionization optical depth, which is significantly lower than estimates
without the use of high-frequency data for explicit monitoring of dust
emission. At high multipoles we detect residual systematic errors in E
polarization, typically at the μK2 level; we therefore
choose to retain temperature information alone for high multipoles as
the recommended baseline, in particular for testing non-minimal models.
Nevertheless, the high-multipole polarization spectra from Planck are
already good enough to enable a separate high-precision determination of
the parameters of the ΛCDM model, showing consistency with those
established independently from temperature information alone.