Bibcode
Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A. et al.
Referencia bibliográfica
Astronomy and Astrophysics, Volume 594, id.A10, 63 pp.
Fecha de publicación:
9
2016
Revista
Número de citas
534
Número de citas referidas
460
Descripción
Planck has mapped the microwave sky in temperature over nine frequency
bands between 30 and 857 GHz and in polarization over seven frequency
bands between 30 and 353 GHz in polarization. In this paper we consider
the problem of diffuse astrophysical component separation, and process
these maps within a Bayesian framework to derive an internally
consistent set of full-sky astrophysical component maps. Component
separation dedicated to cosmic microwave background (CMB) reconstruction
is described in a companion paper. For the temperature analysis, we
combine the Planck observations with the 9-yr Wilkinson Microwave
Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to
derive a joint model of CMB, synchrotron, free-free, spinning dust, CO,
line emission in the 94 and 100 GHz channels, and thermal dust emission.
Full-sky maps are provided for each component, with an angular
resolution varying between 7.´5 and 1deg. Global parameters
(monopoles, dipoles, relative calibration, and bandpass errors) are
fitted jointly with the sky model, and best-fit values are tabulated.
For polarization, the model includes CMB, synchrotron, and thermal dust
emission. These models provide excellent fits to the observed data, with
rms temperature residuals smaller than 4μK over 93% of the sky for
all Planck frequencies up to 353 GHz, and fractional errors smaller than
1% in the remaining 7% of the sky. The main limitations of the
temperature model at the lower frequencies are internal degeneracies
among the spinning dust, free-free, and synchrotron components;
additional observations from external low-frequency experiments will be
essential to break these degeneracies. The main limitations of the
temperature model at the higher frequencies are uncertainties in the 545
and 857 GHz calibration and zero-points. For polarization, the main
outstanding issues are instrumental systematics in the 100-353 GHz bands
on large angular scales in the form of temperature-to-polarization
leakage, uncertainties in the analogue-to-digital conversion, and
corrections for the very long time constant of the bolometer detectors,
all of which are expected to improve in the near future.