Bibcode
Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Casaponsa, B.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E. et al.
Referencia bibliográfica
Astronomy and Astrophysics, Volume 594, id.A9, 42 pp.
Fecha de publicación:
8
2016
Revista
Número de citas
254
Número de citas referidas
224
Descripción
We present foreground-reduced cosmic microwave background (CMB) maps
derived from the full Planck data set in both temperature and
polarization. Compared to the corresponding Planck 2013 temperature sky
maps, the total data volume is larger by a factor of 3.2 for frequencies
between 30 and 70 GHz, and by 1.9 for frequencies between 100 and 857
GHz. In addition, systematic errors in the forms of
temperature-to-polarization leakage, analogue-to-digital conversion
uncertainties, and very long time constant errors have been dramatically
reduced, to the extent that the cosmological polarization signal may now
be robustly recovered on angular scales ℓ ≳ 40. On the very
largest scales, instrumental systematic residuals are still
non-negligible compared to the expected cosmological signal, and modes
with ℓ< 20 are accordingly suppressed in the current polarization
maps by high-pass filtering. As in 2013, four different CMB component
separation algorithms are applied to these observations, providing a
measure of stability with respect to algorithmic and modelling choices.
The resulting polarization maps have rms instrumental noise ranging
between 0.21 and 0.27μK averaged over 55' pixels, and between 4.5 and
6.1μK averaged over 3.4 parcm pixels. The cosmological parameters
derived from the analysis of temperature power spectra are in agreement
at the 1σ level with the Planck 2015 likelihood. Unresolved
mismatches between the noise properties of the data and simulations
prevent a satisfactory description of the higher-order statistical
properties of the polarization maps. Thus, the primary applications of
these polarization maps are those that do not require massive
simulations for accurate estimation of uncertainties, for instance
estimation of cross-spectra and cross-correlations, or stacking
analyses. However, the amplitude of primordial non-Gaussianity is
consistent with zero within 2σ for all local, equilateral, and
orthogonal configurations of the bispectrum, including for polarization
E-modes. Moreover, excellent agreement is found regarding the lensing
B-mode power spectrum, both internally among the various component
separation codes and with the best-fit Planck 2015 Λ cold dark
matter model.