Bibcode
Wiegelmann, T.; Yelles Chaouche, L.; Solanki, S. K.; Lagg, A.
Referencia bibliográfica
Astronomy and Astrophysics, Volume 511, id.A4
Fecha de publicación:
2
2010
Revista
Número de citas
18
Número de citas referidas
18
Descripción
Context. Solar magnetic fields are regularly extrapolated into the
corona starting from photospheric magnetic measurements that can be
affected by significant uncertainty. Aims: We study how
inaccuracies introduced into the maps of the photospheric magnetic
vector by the inversion of ideal and noisy Stokes parameters influence
the extrapolation of nonlinear force-free magnetic fields.
Methods: We compute nonlinear force-free magnetic fields based on
simulated vector magnetograms, by the inversion of Stokes profiles that
were computed by a 3-D radiation MHD simulation snapshot. These
extrapolations are compared with extrapolations that originate directly
in the field in the MHD simulations, which is our reference. We
investigate how line formation and instrumental effects such as noise,
limited spatial resolution, and the effect of employing a filter
instrument influence the resulting magnetic field structure. The
comparison is performed qualitatively by visually inspecting the
magnetic field distribution and quantitatively by different metrics. Results: The reconstructed field is most accurate if ideal Stokes
data are inverted and becomes less accurate if instrumental effects and
noise are included. The results demonstrate that the nonlinear
force-free field extrapolation method tested here is relatively
insensitive to the effects of noise in measured polarization spectra at
levels consistent with present-day instruments. Conclusions: Our
results show that we can reconstruct the coronal magnetic field as a
nonlinear force-free field from realistic photospheric measurements with
an accuracy of a few percent, at least in the absence of sunspots.
Proyectos relacionados
Simulación Numérica de Procesos Astrofísicos
La simulación numérica mediante códigos complejos de ordenador es una herramienta fundamental en la investigación física y en la técnica desde hace décadas. El crecimiento vertiginoso de las capacidades informáticas junto con el avance notable de la matemática numérica ha hecho accesible a los centros de investigación de tamaño medio
Daniel Elías
Nóbrega Siverio