Bibcode
Wiegelmann, T.; Solanki, S. K.; Borrero, J. M.; Martínez-Pillet, V.; del Toro Iniesta, J. C.; Domingo, V.; Bonet, J. A.; Barthol, P.; Gandorfer, A.; Knölker, M.; Schmidt, W.; Title, A. M.
Referencia bibliográfica
The Astrophysical Journal Letters, Volume 723, Issue 2, pp. L185-L189 (2010).
Fecha de publicación:
11
2010
Número de citas
40
Número de citas referidas
35
Descripción
We investigate the fine structure of magnetic fields in the atmosphere
of the quiet Sun. We use photospheric magnetic field measurements from
SUNRISE/IMaX with unprecedented spatial resolution to extrapolate the
photospheric magnetic field into higher layers of the solar atmosphere
with the help of potential and force-free extrapolation techniques. We
find that most magnetic loops that reach into the chromosphere or higher
have one footpoint in relatively strong magnetic field regions in the
photosphere. Ninety-one percent of the magnetic energy in the
mid-chromosphere (at a height of 1 Mm) is in field lines, whose stronger
footpoint has a strength of more than 300 G, i.e., above the
equipartition field strength with convection. The loops reaching into
the chromosphere and corona are also found to be asymmetric in the sense
that the weaker footpoint has a strength B < 300 G and is located in
the internetwork (IN). Such loops are expected to be strongly dynamic
and have short lifetimes, as dictated by the properties of the IN
fields.
Proyectos relacionados
Magnestismo Solar y Estelar
Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas
Tobías
Felipe García