The Galaxy Activity, Torus, and Outflow Survey (GATOS). III. Revealing the inner icy structure in local active galactic nuclei

García-Bernete, I.; Alonso-Herrero, A.; Rigopoulou, D.; Pereira-Santaella, M.; Shimizu, T.; Davies, R.; Donnan, F. R.; Roche, P. F.; González-Martín, O.; Ramos Almeida, C.; Bellocchi, E.; Boorman, P.; Combes, F.; Efstathiou, A.; Esparza-Arredondo, D.; García-Burillo, S.; González-Alfonso, E.; Hicks, E. K. S.; Hönig, S.; Labiano, A.; Levenson, N. A.; López-Rodríguez, E.; Ricci, C.; Packham, C.; Rouan, D.; Stalevski, M.; Ward, M. J.
Referencia bibliográfica

Astronomy and Astrophysics

Fecha de publicación:
1
2024
Número de autores
27
Número de autores del IAC
2
Número de citas
14
Número de citas referidas
10
Descripción
We use JWST/MIRI MRS spectroscopy of a sample of six local obscured type 1.9/2 active galactic nuclei (AGN) to compare their nuclear mid-IR absorption bands with the level of nuclear obscuration traced by X-rays. This study is the first to use subarcsecond angular resolution data of local obscured AGN to investigate the nuclear mid-IR absorption bands with a wide wavelength coverage (4.9-28.1 μm). All the nuclei show the 9.7 μm silicate band in absorption. We compare the strength of the 9.7 and 18 μm silicate features with torus model predictions. The observed silicate features are generally well explained by clumpy and smooth torus models. We report the detection of the 6 μm dirty water ice band (i.e., a mix of water and other molecules such as CO and CO2) at subarcsecond scales (∼0.26″ at 6 μm; inner ∼50 pc) in a sample of local AGN with different levels of nuclear obscuration in the range log NHX-Ray (cm−2)∼22 − 25. We find good correlation between the 6 μm water ice optical depths and NHX-Ray. This result indicates that the water ice absorption might be a reliable tracer of the nuclear intrinsic obscuration in AGN. The weak water ice absorption in less obscured AGN (log NHX-ray (cm−2)≲23.0 cm−2) might be related to the hotter dust temperature (> TsubH2O ∼ 110 K) expected to be reached in the outer layers of the torus due to their more inhomogeneous medium. Our results suggest it might be necessary to include the molecular content, such as H2O, aliphatic hydrocarbons (CH−), and more complex polycyclic aromatic hydrocarbon (PAH) molecules, in torus models to better constrain key parameters such as the torus covering factor (i.e., nuclear obscuration).