Bibcode
Sartoretti, P.; Katz, D.; Cropper, M.; Panuzzo, P.; Seabroke, G. M.; Viala, Y.; Benson, K.; Blomme, R.; Jasniewicz, G.; Jean-Antoine, A.; Huckle, H.; Smith, M.; Baker, S.; Crifo, F.; Damerdji, Y.; David, M.; Dolding, C.; Frémat, Y.; Gosset, E.; Guerrier, A.; Guy, L. P.; Haigron, R.; Janßen, K.; Marchal, O.; Plum, G.; Soubiran, C.; Thévenin, F.; Ajaj, M.; Allende Prieto, C.; Babusiaux, C.; Boudreault, S.; Chemin, L.; Delle Luche, C.; Fabre, C.; Gueguen, A.; Hambly, N. C.; Lasne, Y.; Meynadier, F.; Pailler, F.; Panem, C.; Riclet, F.; Royer, F.; Tauran, G.; Zurbach, C.; Zwitter, T.; Arenou, F.; Gomez, A.; Lemaitre, V.; Leclerc, N.; Morel, T.; Munari, U.; Turon, C.; Žerjal, M.
Referencia bibliográfica
Astronomy and Astrophysics, Volume 616, id.A6, 25 pp.
Fecha de publicación:
8
2018
Revista
Número de citas
124
Número de citas referidas
114
Descripción
Context. The Gaia Data Release 2 (DR2) contains the first release of
radial velocities complementing the kinematic data of a sample of about
7 million relatively bright, late-type stars. Aims: This paper
provides a detailed description of the Gaia spectroscopic data
processing pipeline, and of the approach adopted to derive the radial
velocities presented in DR2. Methods: The pipeline must perform
four main tasks: (i) clean and reduce the spectra observed with the
Radial Velocity Spectrometer (RVS); (ii) calibrate the RVS instrument,
including wavelength, straylight, line-spread function, bias
non-uniformity, and photometric zeropoint; (iii) extract the radial
velocities; and (iv) verify the accuracy and precision of the results.
The radial velocity of a star is obtained through a fit of the RVS
spectrum relative to an appropriate synthetic template spectrum. An
additional task of the spectroscopic pipeline was to provide first-order
estimates of the stellar atmospheric parameters required to select such
template spectra. We describe the pipeline features and present the
detailed calibration algorithms and software solutions we used to
produce the radial velocities published in DR2. Results: The
spectroscopic processing pipeline produced median radial velocities for
Gaia stars with narrow-band near-IR magnitude GRVS ≤ 12
(i.e. brighter than V 13). Stars identified as double-lined
spectroscopic binaries were removed from the pipeline, while variable
stars, single-lined, and non-detected double-lined spectroscopic
binaries were treated as single stars. The scatter in radial velocity
among different observations of a same star, also published in Gaia DR2,
provides information about radial velocity variability. For the hottest
(Teff ≥ 7000 K) and coolest (Teff ≤ 3500 K)
stars, the accuracy and precision of the stellar parameter estimates are
not sufficient to allow selection of appropriate templates. The radial
velocities obtained for these stars were removed from DR2. The pipeline
also provides a first-order estimate of the performance obtained. The
overall accuracy of radial velocity measurements is around 200-300 m
s-1, and the overall precision is 1 km s-1; it
reaches 200 m s-1 for the brightest stars.
Proyectos relacionados
Abundancias Químicas en Estrellas
La espectroscopía de estrellas nos permite determinar las propiedades y composiciones químicas de las mismas. A partir de esta información para estrellas de diferente edad en la Vía Láctea es posible reconstruir la evolución química de la Galaxia, así como el origen de los elementos más pesados que el boro, forjados principalmente en los interiores
Carlos
Allende Prieto