Bibcode
Pastor Yabar, A.; Borrero, J. M.; Ruiz Cobo, B.
Referencia bibliográfica
Astronomy and Astrophysics, Volume 629, id.A24, 16 pp.
Fecha de publicación:
9
2019
Revista
Número de citas
19
Número de citas referidas
16
Descripción
We present a numerical code that solves the forward and inverse problem
of the polarized radiative transfer equation in geometrical scale under
the Zeeman regime. The code is fully parallelized, making it able to
easily handle large observational and simulated datasets. We checked the
reliability of the forward and inverse modules through different
examples. In particular, we show that even when properly inferring
various physical parameters (temperature, magnetic field components, and
line-of-sight velocity) in optical depth, their reliability in
height-scale depends on the accuracy with which the gas-pressure or
density are known. The code is made publicly available as a tool to
solve the radiative transfer equation and perform the inverse solution
treating each pixel independently. An important feature of this code,
that will be exploited in the future, is that working in
geometrical-scale allows for the direct calculation of spatial
derivatives, which are usually required in order to estimate the gas
pressure and/or density via the momentum equation in a three-dimensional
volume, in particular the three-dimensional Lorenz force.
Proyectos relacionados
Magnestismo Solar y Estelar
Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas
Tobías
Felipe García