The eccentricity distribution of warm sub-Saturns in TESS

Fairnington, Tyler R.; Dong, Jiayin; Huang, Chelsea X.; Nabbie, Emma; Zhou, George; Wright, Duncan; Collins, Karen A.; Jenkins, Jon M.; Latham, David W.; Ricker, George; Quinn, Samuel N.; Seager, Sara; Shporer, Avi; Vanderspek, Roland; Winn, Joshua N.; Ajizian, Calvin; Fukui, Akihiko; Baker, David; Conzo, Giuseppe; Fisher, Robert Scott; Forés-Toribio, Raquel; Gan, Tianjun; Garmash, Alexey; Ikuta, Kai; Lark, Adam; de Leon, Jerome P.; Linnenkohl, Katherine; Mann, Christopher R.; Mitchem, Owen; Mori, Mayuko; Muñoz, Jose A.; Narita, Norio; Popowicz, Adam; Radford, Don; Randolph, Justus; Rodriguez Frustaglia, Fabian; Schwarz, Richard P.; Stockdale, Chris; Wang, Jiaqi; Watanabe, Noriharu; Wilkin, Francis P.; Zieliński, Krzysztof Sz; Esparza-Borges, Emma; Murgas, Felipe; Pallé, Enric; Hannu, Parviainen; Yalçınkaya, Selçuk; Baştürk, Ozgür
Referencia bibliográfica

Monthly Notices of the Royal Astronomical Society

Fecha de publicación:
6
2025
Número de autores
48
Número de autores del IAC
6
Número de citas
0
Número de citas referidas
0
Descripción
We present the eccentricity distribution of warm sub-Saturns (4–8 $R_{\rm{\oplus }}$, 8–200 d periods) as derived from an analysis of transit light curves from NASA's Transiting Exoplanet Survey Satellite (TESS) mission. We use the 'photoeccentric' effect to constrain the eccentricities of 76 planets, comprising 60 and 16 from single and multitransiting systems, respectively. We employ Hierarchical Bayesian Modelling to infer the eccentricity distribution of the population, testing both a Beta and Mixture Beta distribution. We identify a few highly eccentric (${e\sim 0.7-0.8}$) warm sub-Saturns with eccentricities that appear too high to be explained by disc migration or planet–planet scattering alone, suggesting high-eccentricity migration may play a role in their formation. The majority of the population have a mean eccentricity of $\bar{e} = 0.103^{+0.047}_{-0.045}$, consistent with both planet–disc and planet–planet interactions. Notably, we find that the highly eccentric sub-Saturns occur in single-transiting systems. This study presents the first evidence at the population level that the eccentricities of sub-Saturns may be sculpted by dynamical processes.