CTA Consortium; Zimmer, S.; Zechlin, H.-S.; Viana, A.; Stamerra, A.; Spengler, G.; Schwanke, U.; Sandaker, H.; Ripken, J.; Nieto, D.; Moulin, E.; Moralejo, A.; Mirabal, N.; Mazini, R.; Jahn, C.; Jacholkowska, A.; Horns, D.; Hassan, T.; González-Muñoz, A.; Glicenstein, J. F.; Gaug, M.; Fornasa, M.; Daniel, M. K.; Contreras, J. L.; Connell, S. H.; Colafrancesco, S.; Brun, P.; Bolmont, J.; Birsin, E.; Barrio, J. A.; Sànchez-Conde, M. A.; Emmanoulopoulos, D.; Conrad, J.; Doro, M.
Referencia bibliográfica
Astroparticle Physics, Volume 43, p. 189-214.
Fecha de publicación:
3
2013
Revista
Número de citas
133
Número de citas referidas
100
Descripción
The Cherenkov Telescope Array (CTA) is a project for a next-generation
observatory for very high energy (GeV-TeV) ground-based gamma-ray
astronomy, currently in its design phase, and foreseen to be operative a
few years from now. Several tens of telescopes of 2-3 different sizes,
distributed over a large area, will allow for a sensitivity about a
factor 10 better than current instruments such as H.E.S.S, MAGIC and
VERITAS, an energy coverage from a few tens of GeV to several tens of
TeV, and a field of view of up to 10°. In the following study, we
investigate the prospects for CTA to study several science questions
that can profoundly influence our current knowledge of fundamental
physics. Based on conservative assumptions for the performance of the
different CTA telescope configurations currently under discussion, we
employ a Monte Carlo based approach to evaluate the prospects for
detection and characterisation of new physics with the array.First, we
discuss CTA prospects for cold dark matter searches, following different
observational strategies: in dwarf satellite galaxies of the Milky Way,
which are virtually void of astrophysical background and have a
relatively well known dark matter density; in the region close to the
Galactic Centre, where the dark matter density is expected to be large
while the astrophysical background due to the Galactic Centre can be
excluded; and in clusters of galaxies, where the intrinsic flux may be
boosted significantly by the large number of halo substructures. The
possible search for spatial signatures, facilitated by the larger field
of view of CTA, is also discussed. Next we consider searches for
axion-like particles which, besides being possible candidates for dark
matter may also explain the unexpectedly low absorption by extragalactic
background light of gamma-rays from very distant blazars. We establish
the axion mass range CTA could probe through observation of long-lasting
flares in distant sources. Simulated light-curves of flaring sources are
also used to determine the sensitivity to violations of Lorentz
invariance by detection of the possible delay between the arrival times
of photons at different energies. Finally, we mention searches for other
exotic physics with CTA.
Proyectos relacionados
Astrofísica de Partículas
El Grupo de Astrofísica de Partículas del IAC participa activamente en tres grandes colaboraciones internacionales de astrofísica de muy altas energías: AMS (Alpha Magnetic Spectrometer), los telescopios de radiación Cherenkov MAGIC I y II, y el Cherenkov Telescope Array (CTA). AMS es un detector de partículas diseñado para operar en el espacio, a
Ramón
García López