Bibcode
Yelles Chaouche, L.; Solanki, S. K.; Schüssler, M.
Referencia bibliográfica
Astronomy and Astrophysics, Volume 504, Issue 2, 2009, pp.595-603
Fecha de publicación:
9
2009
Revista
Número de citas
30
Número de citas referidas
24
Descripción
Context: The structure and dynamics of small vertical photospheric
magnetic flux concentrations has been often treated in the framework of
an approximation based upon a low-order truncation of the Taylor
expansions of all quantities in the horizontal direction, together with
the assumption of instantaneous total pressure balance at the boundary
to the non-magnetic external medium. Formally, such an approximation is
justified if the diameter of the structure (a flux tube or a flux sheet)
is small compared to all other relevant length scales (scale height,
radius of curvature, wavelength, etc.). The advent of realistic 3D
radiative MHD simulations opens the possibility of checking the
consistency of the approximation with the properties of the flux
concentrations that form in the course of a simulation. Aims: We
carry out a comparative analysis between the thin flux tube/sheet models
and flux concentrations formed in a 3D radiation-MHD simulation. Methods: We compare the distribution of the vertical and horizontal
components of the magnetic field in a 3D MHD simulation with the field
distribution in the case of the thin flux tube/sheet approximation. We
also consider the total (gas plus magnetic) pressure in the MHD
simulation box. Results: Flux concentrations with
super-equipartition fields are reasonably well reproduced by the
second-order thin flux tube/sheet approximation. The differences between
approximation and simulation are due to the asymmetry and the dynamics
of the simulated structures.
Proyectos relacionados
Simulación Numérica de Procesos Astrofísicos
La simulación numérica mediante códigos complejos de ordenador es una herramienta fundamental en la investigación física y en la técnica desde hace décadas. El crecimiento vertiginoso de las capacidades informáticas junto con el avance notable de la matemática numérica ha hecho accesible a los centros de investigación de tamaño medio
Daniel Elías
Nóbrega Siverio