The Chromospheric Layer Spectro-Polarimeter (CLASP2) Sounding Rocket Mission: First Results

McKenzie, David Eugene; Ishikawa, Ryohko; Kano, Ryouhei; Rachmeler, Laurel; Trujillo Bueno, Javier; Kobayashi, Ken; Song, Donguk; Yoshida, Masaki; Auchere, Frederic; Okamoto, Takenori
Referencia bibliográfica

American Astronomical Society Meeting #234, id. 126.01. Bulletin of the American Astronomical Society, Vol. 51, No. 4

Fecha de publicación:
6
2019
Número de autores
10
Número de autores del IAC
1
Número de citas
0
Número de citas referidas
0
Descripción
A major challenge for heliophysics is to decipher the magnetic structure of the chromosphere, because of its vital role in the transport of energy into the corona and solar wind. Routine satellite measurements of the chromospheric magnetic field will dramatically improve our understanding of the chromosphere and its connection to the rest of the solar atmosphere. Before such a satellite can be considered for flight, we must refine the measurement techniques by exploring emission lines with a range of magnetic sensitivities. In 2015, CLASP achieved the first measurement of linear polarization produced by scattering processes in a far UV resonance line (hydrogen Lyman-α), and the first exploration of the magnetic field (via the Hanle effect) and geometrical complexity in quiet regions of the chromosphere-corona transition region. These measurements are a first step towards routine quantitative characterization of the local thermal and magnetic conditions in this key layer of the solar atmosphere. Nonetheless, Lyman-α is only one of the magnetically sensitive spectral lines in the UV spectrum. CLASP2 extends the capability of UV spectropolarimetry by acquiring ground-breaking measurements in the Mg II h and k spectral lines near 280 nm, whose cores form about 100 km below the Lyman-α core. These lines are sensitive to a larger range of field strengths than Lyman-α, through both the Hanle and Zeeman effects. CLASP2 will capture measurements of linear and circular polarization to enable the first determination of all 4 Stokes parameters in chromospheric UV radiation. Coupled with numerical modeling of the observed spectral line polarization (anisotropic radiation pumping with Hanle, Zeeman and magneto-optical effects), CLASP2 is a pathfinder for determination of the magnetic field's strength and direction, as well as of the geometry of the plasma in the upper solar chromosphere. CLASP2 will launch from White Sands Missile Range in April 2019. In this presentation, we will summarize the characteristics of the CLASP2 flight, the performance of the UV telescope and spectropolarimeter, and our preliminary findings.