Bibcode
Marcolini, A.; D'Ercole, A.; Battaglia, G.; Gibson, B. K.
Referencia bibliográfica
Monthly Notices of the Royal Astronomical Society, Volume 386, Issue 4, pp. 2173-2180.
Fecha de publicación:
6
2008
Número de citas
57
Número de citas referidas
46
Descripción
Using three-dimensional hydrodynamical simulations of isolated dwarf
spheroidal galaxies (dSphs), we undertake an analysis of the chemical
properties of their inner regions, identifying the respective roles
played by Type Ia supernovae (SNe Ia) and Type II supernovae (SNe II).
The effect of inhomogeneous pollution from SNe Ia is shown to be
prominent within two core radii, with the stars forming therein
amounting to ~20 per cent of the total. These stars are relatively
iron-rich and α-element depleted compared to the stars forming in
the rest of the galaxy. At odds with the projected stellar velocity
dispersion radial profile, the actual three-dimensional one shows a
depression in the central region, where the most metal-rich (i.e.
[Fe/H]-rich) stars are partly segregated. This naturally results in two
different stellar populations, with an anticorrelation between [Fe/H]
and velocity dispersion, in the same sense as that observed in the
Sculptor and Fornax dSphs. Because the most iron-rich stars in our model
are also the most α depleted, a natural prediction and test of our
model is that the same radial segregation effects should exist between
[α/Fe] and velocity dispersion.