Quiet Sun magnetism and Alfven waves as observed with Hinode

Autores
Dr.
Saku Tsuneta
Fecha y hora
29 Ene 2009 - 23:00 Europe/London
Dirección

Aula

Idioma de la charla
Inglés
Idioma de la presentación
Inglés
Número en la serie
0
Descripción

The magnetic landscape of the polar region (Tsuneta et al, 2008) is characterized by vertical kilogauss patches with super-equipartition field strength, a coherence in polarity, lifetimes of 5-15 hr, and ubiquitous weaker transient horizontal fields (Lites et al 2008, Ishikawa & Tsuneta, 2008, 2009). Polar region in 2007 have abundant vertical fields much stronger than the quiet Sun. Unipolar appearance and disappearance of the kG vertical patches must be closely related to properties of the horizontal flow field in the polar region. Difference and similarity between the quiet sun and the polar region are summarized, and its implication for solar dynamo will be discussed. All the open field lines forming the polar coronal hole essentially originate from such magnetic patches, and the fast solar wind would emanate from these vertical flux tubes seen in the photosphere. We conjecture that vertical flux tubes with large expansion around the photospheric-coronal boundary serve as efficient chimneys for Alfven waves that accelerate the solar wind. Indeed, we discovered propagating Alfven waves (kink mode) with magneto-acoustic waves (sausage mode) in the solar photosphere with period of 4-13 minutes with Hinode spectro-polarimeter (Fujimura and Tsuneta, 2009). We found that these fluctuations are superposition of ascending and descending Alfven waves with almost equal intensities from the analysis of the phase relationship between transverse magnetic and velocity fluctuations. Aflven waves along flux tubes in the quiet sun appear to be efficiently reflected back probably at photosphere-corona boundary. It would be very interesting to measure possible change in the reflectivity of Alfven waves depending on the magnetic environment.