The participation of the IAC Solar System group in the OSIRIS-REx mission

Autores
Fecha y hora
12 Abr 2018 - 10:30 Europe/London
Dirección

Aula

Idioma de la charla
Inglés
Idioma de la presentación
Inglés
Número en la serie
1
Descripción

The IAC Solar System group has been cooperating with NASA’s OSIRIS-REx mission since 2011 when I became member of its Science Team. In 2015 we came to an agreement to be members of the Image Processing Working Group (IPWG) to perform two main tasks: produce and analyze the Color-ratio Maps and participate in the in-flight calibration of the cameras (OCAMS). Actually 5 members of our group are participating in the science of the mission.

OSIRIS-REx was launched in 2016 and will visit the asteroid Bennu. It will completely characterize Bennu during 2018-2019, and took a sample of material from the surface that will bring to Earth for detailed study in 2023. Bennu is the primitive near-Earth asteroid more accessible and is also one of the Potentially Hazardous asteroids most likely to collide with Earth. It is well stablished that primitive class asteroids are the parents of carbonaceous chondrite meteorites, the meteorites with the most primitive known composition. Their primitive nature and their water and complex organics content make their study have a high cosmogonic and astrobiological interest

With the aim of supporting the science return of OSIRIS-REx and other two missions (JAXA’s Hayabusa II and ESA’s MarcoPolo-R), we started in 2010 our PRIMitive Asteroids Spectroscopic Survey (PRIMASS). As part of the PRIMASS project, we are obtaining visible and near infrared spectra of the members of the primitive collisional families and dynamical groups of the main asteroid belt. 

In this seminar I will present OSIRIS-REx mission and summarize the research activities of the IAC Solar System group, in particular those related with our participation in the OSIRIS-REx mission: (1) the preparation for the analysis of OCAMS images using Dawn images of Ceres; (2) the spectroscopic characterization of the inner main belt primitive asteroids families from which Bennu likely came from.

Formato