Bibcode
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bethermin, M.; Bielewicz, P.; Blagrave, K.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M. et al.
Bibliographical reference
Astronomy and Astrophysics, Volume 571, id.A30, 39 pp.
Advertised on:
11
2014
Journal
Citations
254
Refereed citations
238
Description
We present new measurements of cosmic infrared background (CIB)
anisotropies using Planck. Combining HFI data with IRAS, the angular
auto- and cross-frequency power spectrum is measured from 143 to 3000
GHz, and the auto-bispectrum from 217 to 545 GHz. The total areas used
to compute the CIB power spectrum and bispectrum are about 2240 and 4400
deg2, respectively. After careful removal of the contaminants
(cosmic microwave background anisotropies, Galactic dust, and
Sunyaev-Zeldovich emission), and a complete study of systematics, the
CIB power spectrum is measured with unprecedented signal to noise ratio
from angular multipoles ℓ ~ 150 to 2500. The bispectrum due to the
clustering of dusty, star-forming galaxies is measured from ℓ ~ 130
to 1100, with a total signal to noise ratio of around 6, 19, and 29 at
217, 353, and 545 GHz, respectively. Two approaches are developed for
modelling CIB power spectrum anisotropies. The first approach takes
advantage of the unique measurements by Planck at large angular scales,
and models only the linear part of the power spectrum, with a mean bias
of dark matter haloes hosting dusty galaxies at a given redshift
weighted by their contribution to the emissivities. The second approach
is based on a model that associates star-forming galaxies with dark
matter haloes and their subhaloes, using a parametrized relation between
the dust-processed infrared luminosity and (sub-)halo mass. The two
approaches simultaneously fit all auto- and cross-power spectra very
well. We find that the star formation history is well constrained up to
redshifts around 2, and agrees with recent estimates of the obscured
star-formation density using Spitzer and Herschel. However, at higher
redshift, the accuracy of the star formation history measurement is
strongly degraded by the uncertainty in the spectral energy distribution
of CIB galaxies. We also find that the mean halo mass which is most
efficient at hosting star formation is log
(Meff/M⊙) = 12.6 and that CIB galaxies have
warmer temperatures as redshift increases. The CIB bispectrum is steeper
than that expected from the power spectrum, although well fitted by a
power law; this gives some information about the contribution of massive
haloes to the CIB bispectrum. Finally, we show that the same halo
occupation distribution can fit all power spectra simultaneously. The
precise measurements enabled by Planck pose new challenges for the
modelling of CIB anisotropies, indicating the power of using CIB
anisotropies to understand the process of galaxy formation.
Related projects
Anisotropy of the Cosmic Microwave Background
The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present
Rafael
Rebolo López