Bibcode
Melin, J.-B.; Bonaldi, A.; Remazeilles, M.; Hagstotz, S.; Diego, J. M.; Hernández-Monteagudo, C.; Génova-Santos, R. T.; Luzzi, G.; Martins, C. J. A. P.; Grandis, S.; Mohr, J. J.; Bartlett, J. G.; Delabrouille, J.; Ferraro, S.; Tramonte, D.; Rubiño-Martín, J. A.; Macìas-Pérez, J. F.; Achúcarro, A.; Ade, P.; Allison, R.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartolo, N.; Basak, S.; Basu, K.; Battye, R. A.; Baumann, D.; Bersanelli, M.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C. S.; Castellano, M. G.; Challinor, A.; Chluba, J.; Clesse, S.; Colafrancesco, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; de Bernardis, P.; de Gasperis, G.; De Petris, M.; De Zotti, G.; Di Valentino, E.; Errard, J.; Feeney, S. M.; Fernández-Cobos, R.; Finelli, F.; Forastieri, F.; Galli, S.; Gerbino, M.; González-Nuevo, J.; Greenslade, J.; Hanany, S.; Handley, W.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Le Brun, A. M. C.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lindholm, V.; Lopez-Caniego, M.; Maffei, B.; Martinez-Gonzalez, E.; Masi, S.; Mazzotta, P.; McCarthy, D.; Melchiorri, A.; Molinari, D.; Monfardini, A.; Natoli, P.; Negrello, M.; Notari, A.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L. et al.
Bibliographical reference
Journal of Cosmology and Astroparticle Physics, Issue 04, article id. 019 (2018).
Advertised on:
4
2018
Citations
26
Refereed citations
24
Description
We examine the cosmological constraints that can be achieved with a
galaxy cluster survey with the future CORE space mission. Using
realistic simulations of the millimeter sky, produced with the latest
version of the Planck Sky Model, we characterize the CORE cluster
catalogues as a function of the main mission performance parameters. We
pay particular attention to telescope size, key to improved angular
resolution, and discuss the comparison and the complementarity of CORE
with ambitious future ground-based CMB experiments that could be
deployed in the next decade. A possible CORE mission concept with a 150
cm diameter primary mirror can detect of the order of 50,000 clusters
through the thermal Sunyaev-Zeldovich effect (SZE). The total yield
increases (decreases) by 25% when increasing (decreasing) the mirror
diameter by 30 cm. The 150 cm telescope configuration will detect the
most massive clusters (>1014 Msolar) at
redshift z>1.5 over the whole sky, although the exact number above
this redshift is tied to the uncertain evolution of the cluster SZE
flux-mass relation; assuming self-similar evolution, CORE will detect 0~
50 clusters at redshift z>1.5. This changes to 800 (200) when
increasing (decreasing) the mirror size by 30 cm. CORE will be able to
measure individual cluster halo masses through lensing of the cosmic
microwave background anisotropies with a 1-σ sensitivity of
4×1014 Msolar, for a 120 cm aperture
telescope, and 1014 Msolar for a 180 cm one. From
the ground, we estimate that, for example, a survey with about 150,000
detectors at the focus of 350 cm telescopes observing 65% of the sky
would be shallower than CORE and detect about 11,000 clusters, while a
survey with the same number of detectors observing 25% of sky with a 10
m telescope is expected to be deeper and to detect about 70,000
clusters. When combined with the latter, CORE would reach a limiting
mass of M500 ~ 2‑3 × 1013
Msolar and detect 220,000 clusters (5 sigma detection limit).
Cosmological constraints from CORE cluster counts alone are competitive
with other scheduled large scale structure surveys in the 2020's for
measuring the dark energy equation-of-state parameters w0 and
wa (σw0=0.28,
σwa=0.31). In combination with primary CMB
constraints, CORE cluster counts can further reduce these error bars on
w0 and wa to 0.05 and 0.13 respectively, and
constrain the sum of the neutrino masses, Σ mν, to
39 meV (1 sigma). The wide frequency coverage of CORE, 60–600 GHz,
will enable measurement of the relativistic thermal SZE by stacking
clusters. Contamination by dust emission from the clusters, however,
makes constraining the temperature of the intracluster medium difficult.
The kinetic SZE pairwise momentum will be extracted with 0S/N=7 in the
foreground-cleaned CMB map. Measurements of TCMB(z) using
CORE clusters will establish competitive constraints on the evolution of
the CMB temperature: (1+z)1‑β, with an uncertainty
of σβ lesssim 2.7× 10‑3 at
low redshift (z lesssim 1). The wide frequency coverage also enables
clean extraction of a map of the diffuse SZE signal over the sky,
substantially reducing contamination by foregrounds compared to the
Planck SZE map extraction. Our analysis of the one-dimensional
distribution of Compton-y values in the simulated map finds an order of
magnitude improvement in constraints on σ8 over the
Planck result, demonstrating the potential of this cosmological probe
with CORE.
Related projects
Anisotropy of the Cosmic Microwave Background
The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present
Rafael
Rebolo López
Cosmology with Large Scale Structure Probes
The Cosmic Microwave Background (CMB) contains the statistical information about the early seeds of the structure formation in our Universe. Its natural counterpart in the local universe is the distribution of galaxies that arises as a result of gravitational growth of those primordial and small density fluctuations. The characterization of the
FRANCISCO SHU
KITAURA JOYANES