Numerical Simulation of Astrophysical Processes

Start year
2003
Organizational Unit

Grants related:

    General
    Description

    Numerical simulation through complex computer codes has been a fundamental tool in physics and technology research for decades. The rapid growth of computing capabilities, coupled with significant advances in numerical mathematics, has made this branch of research accessible to medium-sized research centers, bridging the gap between theoretical and experimental physics. Astrophysics is no exception to this trend. Since the late 1970s, a specialized field known as computational astrophysics has emerged, allowing us to understand a wide range of phenomena that were previously inaccessible to pure theoretical research and to account for previously unexplained observations.

    In recent decades, its primary areas of application have included (magneto)hydrodynamic phenomena and gas dynamics in various cosmic environments. For example, this includes the interiors and atmospheres of stars and planets, the interstellar medium, including magnetohydrodynamics and dynamos, accretion disks, the evolution of planetary nebulae, supernova explosions and remnants, and more. The incorporation of radiative transport equations into numerical simulations, which occurred in past decades, has added greater realism to the study of hydrodynamic processes in stellar photospheres and chromospheres.

    The current project aims to support the development of astrophysical research at the IAC based on the use of large numerical codes that require massively parallel computers and their connection with observational results. The general objective of this project is to perform calculations related to cosmic fluid dynamics and radiative transport. The topics of these calculations will focus on:

    1. Magnetized gas dynamics in the interiors and atmospheres of stars.
    2. Radiation transport and polarization signals in spectral lines based on realistic atomic and molecular models, including Hanle and Zeeman effects.
    3. Comparing theoretical/numerical results with observational data.

    This project is particularly relevant given the increasing involvement of the IAC in national and European supercomputing networks and, more generally, in large-scale supercomputer installation initiatives.

    Principal investigator

    In the following, we highlight the results of our annual year-end summary.

    Throughout the year 2022, partial ionization effects, nonequilibrium ionization effects, and multi-fluids have been one the main blocks of development both from the theoretical and numerical perspective. For instance, a generalization of the the Braginskii 1965 equations has been achieved for a general multi-species plasmas with arbitrary masses and temperatures, and where all of the viscosities and heat fluxes in the model are described by their own evolution equations. This new approach has a crucial advantage that the parallel components along the magnetic field lines do not become unbounded (infinitely large) in regimes of low-collisionallity of interest for this group as, for example, the solar corona (Hunana et al. 2022).  In this thematic block, 2D and 3D simulations, using a two-fluid model that treats the neutral and ionized species as two separate components, have also been performed to analyze the effect that the collisional interaction between both components has on the dynamics of coronal rain, the evolution of the instability of Kelvin-Helmholtz, the propagation of magneto-acoustic waves through the solar chromosphere or the heating of the plasma (Martínez-Gómez et al. 2022a). Another example of the theoretical development with potential numerical applications has been the pursuit of the effects of the ambipolar diffusion in the chromosphere from a more fundamental perspective by means of analytical solutions. The obtained solutions for cases with cylindrical symmetry are shown to constitute a demanding, but nonetheless viable, test for magnetohydrodynamic (MHD) codes that incorporate ambipolar diffusion. In addition, detailed tabulated runs of the solutions have been made available public for the community (Moreno-Insertis et al. 2022).  Lastly, nonequilibrium ionization effects of the Hydrogen atom together with the study of the Lyman α effects have been started to study in simple configurations to be applied later in realistic simulations that include the chromosphere.

     

    Improving and testing the capabilities of the available MHD codes in the solar group has been another of the major key developments carried out in 2022. For example, the results obtained by Moreno-Insertis et al. 2022 were used to check that the MHD Bifrost code is able to reproduce the theoretical solutions with sufficient accuracy up to very advanced diffusive times, as well as to explore the asymptotic properties of these theoretical solutions. In addition to that, several changes have been performed in the MANCHA code whose aim was to increase the efficiency and to add new features that will allow the researchers to perform more realistic experiments as well as exploring new research areas. For instance, MANCHA code has been extended to be able to simulate solar simulations up to the corona, adding a new module that efficiently calculates one of the key ingredients in the corona: the thermal conduction (Navarro et al. 2022). The preparation of the MANCHA code for its multi-fluid extension with radiation has also been another working branch concerning the numerical development in 2022. In addition, new equation-of-state and opacity routines have been developed that allow separating the equilibrium background contributions from those treated out of the equilibrium. Besides facing different challenges in solar physics, the huge development brought about in MANCHA is useful to study main sequence cool stars (G,K,M), which contributes to the better understanding of the stellar physics. To accomplish all these tasks, it was necessary not only to carry out numerous scaling tests and numerical experiments in local machines at the IAC, as well as on Supercomputers such as LaPalma, PICASSO, PizDaint, and MareNostrum4; but also to work together with external collaborators.

     

    During 2022, in this project there has also been a focus on different solar atmosphere phenomena and the corresponding comparison with observations. As an illustrative example, Coronal Bright Points (CBPs) have been modeled for the first time with enough realism to unravel the mechanisms that generate them and provide them with energy, being also able to explain different characteristics observed from space satellites. The comparison with observations is through synthetic SDO/AIA, Solar Orbiter EUI-HRI, and IRIS images that have been computed from the numerical experiment performed with the Bifrost code (Nóbrega-Siverio and Moreno-Insertis, 2022). Another example is the combination of 3D numerical experiments with the MoLMH code and forward modelling using Hα line to study transverse kink oscillations in prominence threads. The results contain relevant implications for the field of prominence seismology, showing that the Hα emission can be used to detect the fundamental mode of the oscillations (Martínez-Gómez et al. 2022b). In addition, ground high-resolution observations of ejective phenomena such as surges in the solar atmosphere have been analyzed, finding striking similarities with results obtained from numerical experiments. On top of that, there have also been significant contributions from the members of this project to the further advance of the observations and construction of new telescopes (Quintero et al. 2022) and satellites (De Pontieu et al. 2022, Cheung et al. 2022), using the earned knowledge from the theoretical-numerical experiments. Finally, an exploratory first attempt at understanding the physics of coronal holes and active regions from a global point of view through 2D magnetohydrostatic solutions was performed (Terradas et al. 2022), which will need of further development in the incoming years for comparisons with observations.

     

    Last but not least, state-of-the-art tools such as the ones provided by Machine Learning and Bayesian statistics have been applied to solar atmosphere problems. In this vein, a project to characterize the limits of the k-means methods and its application to solar observations was launched. In addition, new development in radiative transfer codes have being started to use in a preliminary study of machine learning approach to the computations of radiative terms. Development of the application of Bayesian techniques to the comparison of models in seismology of the solar atmosphere continued in 2022, with a review article published that accounts for the main results obtained in the last decade (Arregui 2022a). Moreover, the Bayesian formalism has been successfully applied to the prediction of the amplitude of the solar activity cycle, proposing a new methodology to quantify the goodness of both the prediction and the underlying model (Arregui 2022b).

    Related publications

    • Accurately constraining velocity information from spectral imaging observations using machine learning techniques
      Determining accurate plasma Doppler (line-of-sight) velocities from spectroscopic measurements is a challenging endeavour, especially when weak chromospheric absorption lines are often rapidly evolving and, hence, contain multiple spectral components in their constituent line profiles. Here, we present a novel method that employs machine learning
      MacBride, Conor D. et al.

      Advertised on:

      2
      2021
      Citations
      11
    • Coronal Heating by MHD Waves
      The heating of the solar chromosphere and corona to the observed high temperatures, imply the presence of ongoing heating that balances the strong radiative and thermal conduction losses expected in the solar atmosphere. It has been theorized for decades that the required heating mechanisms of the chromospheric and coronal parts of the active
      Van Doorsselaere, Tom et al.

      Advertised on:

      12
      2020
      Citations
      153
    • Joint action of Hall and ambipolar effects in 3D magneto-convection simulations of the quiet Sun. I. Dissipation and generation of waves
      The partial ionization of the solar plasma causes several nonideal effects such as the ambipolar diffusion, the Hall effect, and the Biermann battery effect. Here we report on the first three-dimensional realistic simulations of solar local dynamo where all three effects were taken into account. The simulations started with a snapshot of already
      González-Morales, P. A. et al.

      Advertised on:

      10
      2020
      Citations
      17
    • Resonant absorption: Transformation of compressive motions into vortical motions
      This paper investigates the changes in spatial properties when magnetohydrodynamic (MHD) waves undergo resonant damping in the Alfvén continuum. The analysis is carried out for a 1D cylindrical pressure-less plasma with a straight magnetic field. The effect of the damping on the spatial wave variables is determined by using complex frequencies that
      Goossens, M. et al.

      Advertised on:

      9
      2020
      Citations
      6
    • Quantifying the evidence for resonant damping of coronal waves with foot-point wave power asymmetry
      We use Coronal Multi-channel Polarimeter (CoMP) observations of propagating waves in the solar corona together with Bayesian analysis to assess the evidence of models with resonant damping and foot-point wave power asymmetries. We considered two nested models: a reduced and a larger model. The reduced model considers resonant damping as the sole
      Montes-Solís, M. et al.

      Advertised on:

      8
      2020
      Citations
      6
    • Case study of multi-temperature coronal jets for emerging flux MHD models
      Context. Hot coronal jets are a basic observed feature of the solar atmosphere whose physical origin is still actively debated. Aims: We study six recurrent jets that occurred in active region NOAA 12644 on April 4, 2017. They are observed in all the hot filters of AIA as well as cool surges in IRIS slit-jaw high spatial and temporal resolution
      Joshi, Reetika et al.

      Advertised on:

      7
      2020
      Citations
      34
    • Ambipolar diffusion in the Bifrost code
      Context. Ambipolar diffusion is a physical mechanism related to the drift between charged and neutral particles in a partially ionized plasma that is key to many different astrophysical systems. However, understanding its effects is challenging due to basic uncertainties concerning relevant microphysical aspects and the strong constraints it
      Nóbrega-Siverio, D. et al.

      Advertised on:

      6
      2020
      Citations
      21
    • Numerical simulations of large-amplitude oscillations in flux rope solar prominences
      Context. Large-amplitude oscillations (LAOs) of solar prominences are a very spectacular, but poorly understood, phenomena. These motions have amplitudes larger than 10 km s -1 and can be triggered by the external perturbations such as Moreton or EIT waves. Aims: Our aim is to analyze the properties of LAOs using realistic prominence models and the
      Liakh, V. et al.

      Advertised on:

      5
      2020
      Citations
      18
    • Two-dimensional simulations of coronal rain dynamics. I. Model consisting of a vertical magnetic field and an unbounded atmosphere
      Context. Coronal rain often comes about as the final product of evaporation and condensation cycles that occur in active regions. Observations show that the condensed plasma falls with an acceleration that is less than that of free fall. Aims: We aim to improve the understanding of the physical mechanisms behind the slower than free-fall motion and
      Martínez-Gómez, D. et al.

      Advertised on:

      2
      2020
      Citations
      11
    • An introductory guide to fluid models with anisotropic temperatures. Part 1. CGL description and collisionless fluid hierarchy
      We present a detailed guide to advanced collisionless fluid models that incorporate kinetic effects into the fluid framework, and that are much closer to the collisionless kinetic description than traditional magnetohydrodynamics. Such fluid models are directly applicable to modelling the turbulent evolution of a vast array of astrophysical plasmas
      Hunana, P. et al.

      Advertised on:

      12
      2019
      Citations
      28
    • An introductory guide to fluid models with anisotropic temperatures. Part 2. Kinetic theory, Padé approximants and Landau fluid closures
      In Part 2 of our guide to collisionless fluid models, we concentrate on Landau fluid closures. These closures were pioneered by Hammett and Perkins and allow for the rigorous incorporation of collisionless Landau damping into a fluid framework. It is Landau damping that sharply separates traditional fluid models and collisionless kinetic theory
      Hunana, P. et al.

      Advertised on:

      12
      2019
      Citations
      17
    • The Role of Asymmetries in Thermal Nonequilibrium
      Thermal nonequilibrium (TNE) is a fascinating situation that occurs in coronal magnetic flux tubes (loops) for which no solution to the steady-state fluid equations exists. The plasma is constantly evolving even though the heating that produces the hot temperatures does not. This is a promising explanation for isolated phenomena such as prominences
      Klimchuk, James A. et al.

      Advertised on:

      10
      2019
      Citations
      35
    • Nonequilibrium ionization and ambipolar diffusion in solar magnetic flux emergence processes
      Context. Magnetic flux emergence from the solar interior has been shown to be a key mechanism for unleashing a wide variety of phenomena. However, there are still open questions concerning the rise of the magnetized plasma through the atmosphere, mainly in the chromosphere, where the plasma departs from local thermodynamic equilibrium (LTE) and is
      Nóbrega-Siverio, D. et al.

      Advertised on:

      1
      2020
      Citations
      30
    • Two-fluid simulations of waves in the solar chromosphere. II. Propagation and damping of fast magneto-acoustic waves and shocks
      Waves and shocks traveling through the solar chromospheric plasma are influenced by its partial ionization and weak collisional coupling, and may become susceptible to multi-fluid effects, similar to interstellar shock waves. In this study, we consider fast magneto-acoustic shock wave formation and propagation in a stratified medium, that is
      Popescu Braileanu, B. et al.

      Advertised on:

      10
      2019
      Citations
      29
    • Origin of the chromospheric three-minute oscillations in sunspot umbrae
      Context. Sunspot umbrae show a change in the dominant period of their oscillations from five minutes (3.3 mHz) in the photosphere to three minutes (5.5 mHz) in the chromosphere. Aims: In this paper, we explore the two most popular models proposed to explain the three-minute oscillations: the chromospheric acoustic resonator and the propagation of
      Felipe, T.

      Advertised on:

      7
      2019
      Citations
      19
    • Fundamental transverse vibrations of the active region solar corona
      Context. Some high-resolution observations have revealed that the active region solar corona is filled with a myriad of thin strands even in apparently uniform regions with no resolved loops. This fine structure can host collective oscillations involving a large portion of the corona due to the coupling of the motions of the neighbouring strands
      Luna, M. et al.

      Advertised on:

      9
      2019
      Citations
      3
    • Two-fluid simulations of waves in the solar chromosphere. I. Numerical code verification
      Solar chromosphere consists of a partially ionized plasma, which makes modeling the solar chromosphere a particularly challenging numerical task. Here we numerically model chromospheric waves using a two-fluid approach with a newly developed numerical code. The code solves two-fluid equations of conservation of mass, momentum, and energy, together
      Popescu Braileanu, B. et al.

      Advertised on:

      7
      2019
      Citations
      47
    • Exploration of long-period oscillations in an Hα prominence
      Context. In previous work, we studied a prominence which appeared like a tornado in a movie made from 193 Å filtergrams obtained with the Atmospheric Imaging Assembly (AIA) imager aboard the Solar Dynamics Observatory (SDO). The observations in Hα obtained simultaneously during two consecutive sequences of one hour with the Multi-channel
      Zapiór, M. et al.

      Advertised on:

      3
      2019
      Citations
      6
    • Fast-to-Alfvén Mode Conversion Mediated by Hall Current. II. Application to the Solar Atmosphere
      Coupling between fast magnetoacoustic and Alfvén waves can be observed in fully ionized plasmas mediated by stratification and 3D geometrical effects. In Paper I, Cally & Khomenko have shown that in a weakly ionized plasma, such as the solar photosphere and chromosphere, the Hall current introduces a new coupling mechanism. The present study
      González-Morales, P. A. et al.

      Advertised on:

      1
      2019
      Citations
      21
    • Three-dimensional simulations of solar magneto-convection including effects of partial ionization
      In recent decades, REALISTIC three-dimensional radiative-magnetohydrodynamic simulations have become the dominant theoretical tool for understanding the complex interactions between the plasma and magnetic field on the Sun. Most of such simulations are based on approximations of magnetohydrodynamics, without directly considering the consequences of
      Khomenko, E. et al.

      Advertised on:

      10
      2018
      Citations
      55

    Related talks

    No related talks were found.

    Related conferences

    No related conferences were found.