Tensor-to-scalar ratio forecasts for extended LiteBIRD frequency configurations

Fuskeland, U.; Aumont, J.; Aurlien, R.; Baccigalupi, C.; Banday, A. J.; Eriksen, H. K.; Errard, J.; Génova-Santos, R. T.; Hasebe, T.; Hubmayr, J.; Imada, H.; Krachmalnicoff, N.; Lamagna, L.; Pisano, G.; Poletti, D.; Remazeilles, M.; Thompson, K. L.; Vacher, L.; Wehus, I. K.; Azzoni, S.; Ballardini, M.; Barreiro, R. B.; Bartolo, N.; Basyrov, A.; Beck, D.; Bersanelli, M.; Bortolami, M.; Brilenkov, M.; Calabrese, E.; Carones, A.; Casas, F. J.; Cheung, K.; Chluba, J.; Clark, S. E.; Clermont, L.; Columbro, F.; Coppolecchia, A.; D'Alessandro, G.; de Bernardis, P.; de Haan, T.; de la Hoz, E.; De Petris, M.; Della Torre, S.; Diego-Palazuelos, P.; Finelli, F.; Franceschet, C.; Galloni, G.; Galloway, M.; Gerbino, M.; Gervasi, M.; Ghigna, T.; Giardiello, S.; Gjerløw, E.; Gruppuso, A.; Hargrave, P.; Hattori, M.; Hazumi, M.; Hergt, L. T.; Herman, D.; Herranz, D.; Hivon, E.; Hoang, T. D.; Kohri, K.; Lattanzi, M.; Lee, A. T.; Leloup, C.; Levrier, F.; Lonappan, A. I.; Luzzi, G.; Maffei, B.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matsumura, T.; Migliaccio, M.; Montier, L.; Morgante, G.; Mot, B.; Mousset, L.; Nagata, R.; Namikawa, T.; Nati, F.; Natoli, P.; Nerval, S.; Novelli, A.; Pagano, L.; Paiella, A.; Paoletti, D.; Pascual-Cisneros, G.; Patanchon, G.; Pelgrims, V.; Piacentini, F.; Piccirilli, G.; Polenta, G.; Puglisi, G.; Raffuzzi, N.; Ritacco, A.; Rubino-Martin, J. A.; Savini, G.; Scott, D. et al.
Bibliographical reference

Astronomy and Astrophysics

Advertised on:
8
2023
Number of authors
117
IAC number of authors
2
Citations
10
Refereed citations
6
Description
LiteBIRD is a planned JAXA-led cosmic microwave background (CMB) B-mode satellite experiment aiming for launch in the late 2020s, with a primary goal of detecting the imprint of primordial inflationary gravitational waves. Its current baseline focal-plane configuration includes 15 frequency bands between 40 and 402 GHz, fulfilling the mission requirements to detect the amplitude of gravitational waves with the total uncertainty on the tensor-to-scalar ratio, δr, down to δr < 0.001. A key aspect of this performance is accurate astrophysical component separation, and the ability to remove polarized thermal dust emission is particularly important. In this paper we note that the CMB frequency spectrum falls off nearly exponentially above 300 GHz relative to the thermal dust spectral energy distribution, and a relatively minor high frequency extension can therefore result in even lower uncertainties and better model reconstructions. Specifically, we compared the baseline design with five extended configurations, while varying the underlying dust modeling, in each of which the High-Frequency Telescope (HFT) frequency range was shifted logarithmically toward higher frequencies, with an upper cutoff ranging between 400 and 600 GHz. In each case, we measured the tensor-to-scalar ratio r uncertainty and bias using both parametric and minimum-variance component-separation algorithms. When the thermal dust sky model includes a spatially varying spectral index and temperature, we find that the statistical uncertainty on r after foreground cleaning may be reduced by as much as 30-50% by extending the upper limit of the frequency range from 400 to 600 GHz, with most of the improvement already gained at 500 GHz. We also note that a broader frequency range leads to higher residuals when fitting an incorrect dust model, but also it is easier to discriminate between models through higher χ2 sensitivity. Even in the case in which the fitting procedure does not correspond to the underlying dust model in the sky, and when the highest frequency data cannot be modeled with sufficient fidelity and must be excluded from the analysis, the uncertainty on r increases by only about 5% for a 500 GHz configuration compared to the baseline.
Related projects
Full-sky map showing the spatial distribution of the primary anisotropies of the Cosmic Microwave Background (generated 380,000 years after the Big Bang) derived from observations of the Planck satellite
Anisotropy of the Cosmic Microwave Background
The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present
Rafael
Rebolo López