Temperature Structure and Metallicity in H II Regions

Rodríguez, Mónica; García-Rojas, J.
Bibliographical reference

The Astrophysical Journal, Volume 708, Issue 2, pp. 1551-1559 (2010).

Advertised on:
1
2010
Number of authors
2
IAC number of authors
1
Citations
20
Refereed citations
15
Description
The metallicities implied by collisionally excited lines (CELs) of heavy elements in H II regions are systematically lower than those implied by recombination lines (RLs) by factors of ~2, introducing uncertainties of the same order in the metallicities inferred for the interstellar medium of any star-forming galaxy. Most explanations of this discrepancy are based on the different sensitivities of CELs and RLs to electron temperature, and invoke either some extra heating mechanism producing temperature fluctuations in the ionized region or the addition of cold gas in metal-rich inclusions or ionized by cosmic rays or X-rays. These explanations will change the temperature structure of the ionized gas from the one predicted by simple photoionization models, and depending on which one is correct, will imply different metallicities for the emitting gas. We select nine H II regions with observed spectra of high quality and show that simple models with metallicities close to the ones implied by oxygen CELs reproduce easily their temperature structure, measured with T e([N II])/T e([O III]), and their oxygen CELs emission. We discuss the strong constraints that this agreement places on the possible explanations of the discrepancy and suggest that the simplest explanation, namely errors in the line recombination coefficients by factors ~2, might be the correct one. In such case, CELs will provide the best estimates of metallicity.
Related projects
Izquierda - Imagen RGB de la nebulosa de Orión y M43 obtenida filtros estrechos con la cámara WFC en el INT: H alfa (rojo), [S II] 6716+30 (verde), [O III] 5007 (azul). Derecha - Imagen en falso color de la nebulosa planetaria NGC 6778. En azul se ve la emisión en la línea de O II tomada con el filtro sintonizable azul del instrumento OSIRIS en el GTC; en verde imagen con el filtro estrecho de [O III] del Nordic Optical Telescope (NOT).
Physics of Ionized Nebulae
The research that is being carried out by the group can be condensed into two main lines: 1) Study of the structure, dynamics, physical conditions and chemical evolution of Galactic and extragalactic ionized nebulae through detailed analysis and modelization of their spectra. Investigation of chemical composition gradients along the disk of our
Jorge
García Rojas