Bibcode
Greenslade, J.; Aguilar, E.; Clements, D. L.; Dannerbauer, H.; Cheng, T.; Petitpas, G.; Yang, C.; Messias, H.; Oteo, I.; Farrah, D.; Michałowski, M. J.; Pérez Fournon, I.; Aretxaga, I.; Yun, M. S.; Eales, S.; Dunne, L.; Cooray, A.; Andreani, P.; Hughes, D. H.; Velázquez, M.; Sánchez-Argüelles, D.; Ponthieu, N.
Bibliographical reference
Monthly Notices of the Royal Astronomical Society
Advertised on:
12
2019
Citations
4
Refereed citations
4
Description
Dusty star-forming galaxies (DSFGs) detected at z > 4 provide important examples of the first generations of massive galaxies. However, few examples with spectroscopic confirmation are currently known, with Hershel struggling to detect significant numbers of z > 6 DSFGs. NGP6_D1 is a bright 850 μm source (12.3 ± 2.5 mJy) with no counterparts at shorter wavelengths (a SPIRE dropout). Interferometric observations confirm it is a single source, with no evidence for any optical or NIR emission, or nearby likely foreground lensing sources. No >3σ detected lines are seen in both LMT Redshift Search Receiver and IRAM 30 m EMIR spectra of NGP6_D1 across 32 GHz of bandwidth despite reaching detection limits of ̃ 1 mJy/500 km s^{-1}, so the redshift remains unknown. Template fitting suggests that NGP6_D1 is most likely between z = 5.8 and 8.3. SED analysis finds that NGP6_D1 is a ULIRG, with a dust mass ̃108-109 M☉ and a star-formation rate of ̃500 M☉ yr-1. We place upper limits on the gas mass of NGP6_D1 of MH2 <(1.1 ± 3.5) × 1011 M☉, consistent with a gas-to-dust ratio of ̃100-1000. We discuss the nature of NGP6_D1 in the context of the broader sub-mm population, and find that comparable SPIRE dropouts account for ̃20 per cent of all SCUBA-2 detected sources, but with a similar flux density distribution to the general population.
Related projects
Formation and Evolution of Galaxies: Observations in Infrared and other Wavelengths
This IAC research group carries out several extragalactic projects in different spectral ranges, using space as well as ground-based telescopes, to study the cosmological evolution of galaxies and the origin of nuclear activity in active galaxies. The group is a member of the international consortium which built the SPIRE instrument for the
Ismael
Pérez Fournon
Molecular Gas and Dust in Galaxies Across Cosmic Time
Two of the most fundamental questions in astrophysics are the conversion of molecular gas into stars and how this physical process is a function of environments on all scales, ranging from planetary systems, stellar clusters, galaxies to galaxy clusters. The main goal of this internal project is to get insight into the formation and evolution of
Helmut
Dannerbauer