Bibcode
Carralot, F.; Carones, A.; Krachmalnicoff, N.; Ghigna, T.; Novelli, A.; Pagano, L.; Piacentini, F.; Baccigalupi, C.; Adak, D.; Anand, A.; Aumont, J.; Azzoni, S.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Basyrov, A.; Bersanelli, M.; Bortolami, M.; Brinckmann, T.; Cacciotti, F.; Campeti, P.; Carinos, E.; Casas, F. J.; Cheung, K.; Clermont, L.; Columbro, F.; Conenna, G.; Coppi, G.; Coppolecchia, A.; Cuttaia, F.; de Bernardis, P.; De Lucia, M.; Della Torre, S.; Di Giorgi, E.; Diego-Palazuelos, P.; Essinger-Hileman, T.; Ferreira, E.; Finelli, F.; Franceschet, C.; Galloni, G.; Galloway, M.; Gervasi, M.; Génova-Santos, R. T.; Giardiello, S.; Gimeno-Amo, C.; Gjerløw, E.; Gruppuso, A.; Hazumi, M.; Henrot-Versillé, S.; Hergt, L. T.; Hivon, E.; Ishino, H.; Jost, B.; Kohri, K.; Lamagna, L.; Leloup, C.; Lembo, M.; Levrier, F.; Lonappan, A. I.; López-Caniego, M.; Luzzi, G.; Macias-Perez, J.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matsumura, T.; Micheli, S.; Monelli, M.; Montier, L.; Morgante, G.; Mot, B.; Mousset, L.; Nagano, Y.; Nagata, R.; Namikawa, T.; Natoli, P.; Obata, I.; Occhiuzzi, A.; Paiella, A.; Paoletti, D.; Pascual-Cisneros, G.; Patanchon, G.; Pavlidou, V.; Pisano, G.; Polenta, G.; Porcelli, L.; Puglisi, G.; Raffuzzi, N.; Remazeilles, M.; Rubiño-Martín, J. A.; Ruiz-Granda, M.; Sanghavi, J.; Scott, D.; Shiraishi, M.; Sullivan, R. M.; Takase, Y.; Tassis, K.; Terenzi, L. et al.
Bibliographical reference
Journal of Cosmology and Astroparticle Physics
Advertised on:
1
2025
Citations
0
Refereed citations
0
Description
The detection of primordial B modes of the cosmic microwave background (CMB) could provide information about the early stages of the Universe's evolution. The faintness of this signal requires exquisite calibration accuracy and control of instrumental systematic effects which otherwise could bias the measurements. In this work, we study the impact of an imperfect relative polarisation gain calibration on the recovered value of the tensor-to-scalar ratio r for the LiteBIRD experiment, through the application of the blind Needlet Internal Linear Combination (NILC) foreground-cleaning method. We derive requirements on the relative calibration accuracy of the overall polarisation gain (Δgν ) for each LiteBIRD frequency channel. Our results show that minimum variance techniques, as NILC, are less sensitive to systematic gain calibration uncertainties compared to a parametric approach, if the latter is not equipped with a proper modelling of these instrumental effects. In this study, the most stringent requirements are found in the channels where the CMB signal is relatively brighter, with the tightest constraints at 166 GHz (Δgν ≈ 0.16%). This differs from the outcome of an analogous analysis performed with a parametric method, where the tightest requirements are obtained for the foreground-dominated channels. Gain calibration uncertainties, corresponding to the derived requirements, are then simultaneously propagated into all frequency channels. By doing so, we find that the overall impact on estimated r is lower than the total gain systematic budget for LiteBIRD approximately by a factor 5, due to the correlations of the impacts of gain calibration uncertainties in different frequency channels. In order to decouple the systematic effect from the specific choice of the model, we derive the requirements assuming constant spectral parameters for the foreground emission. To assess the robustness of the obtained results against more realistic scenarios, we repeat the analysis assuming sky models of intermediate and high complexity. In these further cases, we adopt an optimised NILC pipeline, called the Multi-Clustering NILC (MC-NILC). We find that the impact of gain calibration uncertainties on r is lower than the LiteBIRD gain systematics budget for the intermediate-complexity sky model. For the high-complexity case, instead, it would be necessary to tighten the requirements by a factor 1.8.