Appourchaux, T.; Liewer, P.; Watt, M.; Alexander, D.; Andretta, V.; Auchère, F.; D'Arrigo, P.; Ayon, J.; Corbard, T.; Fineschi, S.; Finsterle, W.; Floyd, L.; Garbe, G.; Gizon, L.; Hassler, D.; Harra, L.; Kosovichev, A.; Leibacher, J.; Leipold, M.; Murphy, N.; Maksimovic, M.; Martinez-Pillet, V.; Matthews, B. S. A.; Mewaldt, R.; Moses, D.; Newmark, J.; Régnier, S.; Schmutz, W.; Socker, D.; Spadaro, D.; Stuttard, M.; Trosseille, C.; Ulrich, R.; Velli, M.; Vourlidas, A.; Wimmer-Schweingruber, C. R.; Zurbuchen, T.
Bibliographical reference
Experimental Astronomy, Volume 23, Issue 3, pp.1079-1117
Advertised on:
3
2009
Journal
Citations
22
Refereed citations
17
Description
The POLAR Investigation of the Sun (POLARIS) mission uses a combination
of a gravity assist and solar sail propulsion to place a spacecraft in a
0.48 AU circular orbit around the Sun with an inclination of 75°
with respect to solar equator. This challenging orbit is made possible
by the challenging development of solar sail propulsion. This first
extended view of the high-latitude regions of the Sun will enable
crucial observations not possible from the ecliptic viewpoint or from
Solar Orbiter. While Solar Orbiter would give the first glimpse of the
high latitude magnetic field and flows to probe the solar dynamo, it
does not have sufficient viewing of the polar regions to achieve
POLARIS’s primary objective: determining the relation between the
magnetism and dynamics of the Sun’s polar regions and the solar
cycle.
Related projects
Solar and Stellar Magnetism
Magnetic fields are at the base of star formation and stellar structure and evolution. When stars are born, magnetic fields brake the rotation during the collapse of the mollecular cloud. In the end of the life of a star, magnetic fields can play a key role in the form of the strong winds that lead to the last stages of stellar evolution. During
Tobías
Felipe García