Bibcode
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Aniano, G.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Draine, B. T.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G. et al.
Bibliographical reference
Astronomy and Astrophysics, Volume 586, id.A132, 26 pp.
Advertised on:
2
2016
Journal
Citations
139
Refereed citations
131
Description
We present all-sky modelling of the high resolution Planck, IRAS, and
WISE infrared (IR) observations using the physical dust model presented
by Draine & Li in 2007 (DL, ApJ, 657, 810). We study the performance
and results of this model, and discuss implications for future dust
modelling. The present work extends the DL dust modelling carried out on
nearby galaxies using Herschel and Spitzer data to Galactic dust
emission. We employ the DL dust model to generate maps of the dust mass
surface density ΣMd, the dust optical
extinction AV, and the starlight intensity heating the bulk
of the dust, parametrized by Umin. The DL model reproduces
the observed spectral energy distribution (SED) satisfactorily over most
of the sky, with small deviations in the inner Galactic disk and in low
ecliptic latitude areas, presumably due to zodiacal light contamination.
In the Andromeda galaxy (M31), the present dust mass estimates agree
remarkably well (within 10%) with DL estimates based on independent
Spitzer and Herschel data. We compare the DL optical extinction
AV for the diffuse interstellar medium (ISM) with optical
estimates for approximately 2 × 105 quasi-stellar
objects (QSOs) observed inthe Sloan Digital Sky Survey (SDSS). The DL
AV estimates are larger than those determined towards QSOs by
a factor of about 2, which depends on Umin. The DL fitting
parameter Umin, effectively determined by the wavelength
where the SED peaks, appears to trace variations in the far-IR opacity
of the dust grains per unit AV, and not only in the starlight
intensity. These results show that some of the physical assumptions of
the DL model will need to be revised. To circumvent the model
deficiency, we propose an empirical renormalization of the DL
AV estimate, dependent of Umin, which compensates
for the systematic differences found with QSO observations. This
renormalization, made to match the AV estimates towards QSOs,
also brings into agreement the DL AV estimates with those
derived for molecular clouds from the near-IR colours of stars in the 2
micron all sky survey (2MASS). The DL model and the QSOs data are also
used to compress the spectral information in the Planck and IRAS
observations for the diffuse ISM to a family of 20 SEDs normalized per
AV, parameterized by Umin, which may be used to
test and empirically calibrate dust models. The family of SEDs and the
maps generated with the DL model are made public in the Planck Legacy
Archive.