Bibcode
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Cardoso, J.-F.; Casassus, S.; Catalano, A.; Chamballu, A.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Doré, O.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Franceschi, E.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Ghosh, T.; Giard, M.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Hornstrup, A.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S. et al.
Bibliographical reference
Astronomy and Astrophysics, Volume 565, id.A103, 28 pp.
Advertised on:
5
2014
Journal
Citations
76
Refereed citations
68
Description
Anomalous microwave emission (AME) is believed to be due to electric
dipole radiation from small spinning dust grains. The aim of this paper
is a statistical study of the basic properties of AME regions and the
environment in which they emit. We used WMAP and Planck maps, combined
with ancillary radio and IR data, to construct a sample of 98 candidate
AME sources, assembling SEDs for each source using aperture photometry
on 1°-smoothed maps from 0.408 GHz up to 3000 GHz. Each spectrum is
fitted with a simple model of free-free, synchrotron (where necessary),
cosmic microwave background (CMB), thermal dust, and spinning dust
components. We find that 42 of the 98 sources have significant
(>5σ) excess emission at frequencies between 20 and 60 GHz. An
analysis of the potential contribution of optically thick free-free
emission from ultra-compact H ii regions, using IR colour criteria,
reduces the significant AME sample to 27 regions. The spectrum of the
AME is consistent with model spectra of spinning dust. Peak frequencies
are in the range 20-35 GHz except for the California nebula (NGC 1499),
which appears to have a high spinning dust peak frequency of (50
± 17) GHz. The AME regions tend to be more spatially extended
than regions with little or no AME. The AME intensity is strongly
correlated with the sub-millimetre/IR flux densities and comparable to
previous AME detections in the literature. AME emissivity, defined as
the ratio of AME to dust optical depth, varies by an order of magnitude
for the AME regions. The AME regions tend to be associated with cooler
dust in the range 14-20 K and an average emissivity index,
βd, of +1.8, while the non-AME regions are typically
warmer, at 20-27 K. In agreement with previous studies, the AME
emissivity appears to decrease with increasing column density. This
supports the idea of AME originating from small grains that are known to
be depleted in dense regions, probably due to coagulation onto larger
grains. We also find a correlation between the AME emissivity (and to a
lesser degree the spinning dust peak frequency) and the intensity of the
interstellar radiation field, G0. Modelling of this trend
suggests that both radiative and collisional excitation are important
for the spinning dust emission. The most significant AME regions tend to
have relatively less ionized gas (free-free emission), although this
could be a selection effect. The infrared excess, a measure of the
heating of dust associated with H ii regions, is typically >4 for AME
sources, indicating that the dust is not primarily heated by hot OB
stars. The AME regions are associated with known dark nebulae and have
higher 12 μm/25 μm ratios. The emerging picture is that the bulk
of the AME is coming from the polycyclic aromatic hydrocarbons and small
dust grains from the colder neutral interstellar medium phase.
Related projects
Anisotropy of the Cosmic Microwave Background
The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present
Rafael
Rebolo López