Bibcode
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alina, D.; Alves, M. I. R.; Armitage-Caplan, C.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gouveia Dal Pino, E. M.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G. et al.
Bibliographical reference
Astronomy and Astrophysics, Volume 576, id.A104, 33 pp.
Advertised on:
4
2015
Journal
Citations
369
Refereed citations
325
Description
This paper presents an overview of the polarized sky as seen by Planck
HFI at 353 GHz, which is the most sensitive Planck channel for dust
polarization. We construct and analyse maps of dust polarization
fraction and polarization angle at 1° resolution, taking into
account noise bias and possible systematic effects. The sensitivity of
the Planck HFI polarization measurements allows for the first time a
mapping of Galactic dust polarized emission on large scales, including
low column density regions. We find that the maximum observed dust
polarization fraction is high (pmax = 19.8%), in particular
in some regions of moderate hydrogen column density (NH <
2 × 1021 cm-2). The polarization fraction
displays a large scatter at NH below a few 1021
cm-2. There is a general decrease in the dust polarization
fraction with increasing column density above NH ≃ 1
× 1021 cm-2 and in particular a sharp drop
above NH ≃ 1.5 × 1022 cm-2.
We characterize the spatial structure of the polarization angle using
the angle dispersion function. We find that the polarization angle is
ordered over extended areas of several square degrees, separated by
filamentary structures of high angle dispersion function. These appear
as interfaces where the sky projection of the magnetic field changes
abruptly without variations in the column density. The polarization
fraction is found to be anti-correlated with the dispersion of
polarization angles. These results suggest that, at the resolution of
1°, depolarization is due mainly to fluctuations in the magnetic
field orientation along the line of sight, rather than to the loss of
grain alignment in shielded regions. We also compare the polarization of
thermal dust emission with that of synchrotron measured with Planck,
low-frequency radio data, and Faraday rotation measurements toward
extragalactic sources. These components bear resemblance along the
Galactic plane and in some regions such as the Fan and North Polar Spur
regions. The poor match observed in other regions shows, however, that
dust, cosmic-ray electrons, and thermal electrons generally sample
different parts of the line of sight.
Appendices are available in electronic form at http://www.aanda.org
Related projects
Anisotropy of the Cosmic Microwave Background
The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present
Rafael
Rebolo López