Bibcode
Planck Collaboration; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Benabed, K.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carron, J.; Chiang, H. C.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Ducout, A.; Dupac, X.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Finelli, F.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hivon, E.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kim, J.; Kisner, T. S.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Lellouch, E.; Levrier, F.; Liguori, M.; Lilje, P. B.; Lindholm, V.; López-Caniego, M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D. et al.
Bibliographical reference
Astronomy and Astrophysics, Volume 607, id.A122, 20 pp.
Advertised on:
11
2017
Journal
Citations
29
Refereed citations
28
Description
Measurements of flux density are described for five planets, Mars,
Jupiter, Saturn, Uranus, and Neptune, across the six Planck High
Frequency Instrument frequency bands (100-857 GHz) and these are then
compared with models and existing data. In our analysis, we have also
included estimates of the brightness of Jupiter and Saturn at the three
frequencies of the Planck Low Frequency Instrument (30, 44, and 70 GHz).
The results provide constraints on the intrinsic brightness and the
brightness time-variability of these planets. The majority of the planet
flux density estimates are limited by systematic errors, but still yield
better than 1% measurements in many cases. Applying data from Planck
HFI, the Wilkinson Microwave Anisotropy Probe (WMAP), and the Atacama
Cosmology Telescope (ACT) to a model that incorporates contributions
from Saturn's rings to the planet's total flux density suggests a best
fit value for the spectral index of Saturn's ring system of
βring = 2.30 ± 0.03 over the 30-1000 GHz
frequency range. Estimates of the polarization amplitude of the planets
have also been made in the four bands that have polarization-sensitive
detectors (100-353 GHz); this analysis provides a 95% confidence level
upper limit on Mars's polarization of 1.8, 1.7, 1.2, and 1.7% at 100,
143, 217, and 353 GHz, respectively. The average ratio between the
Planck-HFI measurements and the adopted model predictions for all five
planets (excluding Jupiter observations for 353 GHz) is 1.004, 1.002,
1.021, and 1.033 for 100, 143, 217, and 353 GHz, respectively. Model
predictions for planet thermodynamic temperatures are therefore
consistent with the absolute calibration of Planck-HFI detectors at
about the three-percent level. We compare our measurements with
published results from recent cosmic microwave background experiments.
In particular, we observe that the flux densities measured by Planck HFI
and WMAP agree to within 2%. These results allow experiments operating
in the mm-wavelength range to cross-calibrate against Planck and improve
models of radiative transport used in planetary science.