Bibcode
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Chary, R.-R.; Chiang, L.-Y.; Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; D'Arcangelo, O.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dobler, G.; Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, T. R.; Jagemann, T.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M. et al.
Bibliographical reference
Astronomy and Astrophysics, Volume 554, id.A139, 15 pp.
Advertised on:
6
2013
Journal
Citations
147
Refereed citations
119
Description
Using precise full-sky observations from Planck, and applying several
methods of component separation, we identify and characterise the
emission from the Galactic "haze" at microwave wavelengths. The haze is
a distinct component of diffuse Galactic emission, roughly centered on
the Galactic centre, and extends to | b | ~ 35-50° in Galactic
latitude and | l | ~ 15-20° in longitude. By combining the Planck
data with observations from the Wilkinson Microwave Anisotropy Probe, we
were able to determine the spectrum of this emission to high accuracy,
unhindered by the strong systematic biases present in previous analyses.
The derived spectrum is consistent with power-law emission with a
spectral index of -2.56 ± 0.05, thus excluding free-free emission
as the source and instead favouring hard-spectrum synchrotron radiation
from an electron population with a spectrum (number density per energy)
dN/dE ∝ E-2.1. At Galactic latitudes | b | < 30°,
the microwave haze morphology is consistent with that of the Fermi
gamma-ray "haze" or "bubbles", while at b ~ -50° we have identified
an edge in the microwave haze that is spatially coincident with the edge
in the gamma-ray bubbles. Taken together, this indicates that we have a
multi-wavelength view of a distinct component of our Galaxy. Given both
the very hard spectrum and the extended nature of the emission, it is
highly unlikely that the haze electrons result from supernova shocks in
the Galactic disk. Instead, a new astrophysical mechanism for cosmic-ray
acceleration in the inner Galaxy is implied.
Related projects
Anisotropy of the Cosmic Microwave Background
The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present
Rafael
Rebolo López