Bibcode
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Baker, M.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhandari, P.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borders, J.; Borrill, J.; Bouchet, F. R.; Bowman, B.; Bradshaw, T.; Bréelle, E.; Bucher, M.; Burigana, C.; Butler, R. C.; Cabella, P.; Camus, P.; Cantalupo, C. M.; Cappellini, B.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chambelland, J. P.; Charra, J.; Charra, M.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Collaudin, B.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Crook, M.; Cuttaia, F.; Damasio, C.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dolag, K.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Filliard, C.; Finelli, F.; Foley, S.; Forni, O.; Fosalba, P.; Fourmond, J.-J.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Gavila, E.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Guyot, G.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M. et al.
Bibliographical reference
Astronomy and Astrophysics, Volume 536, id.A2
Advertised on:
12
2011
Journal
Citations
90
Refereed citations
82
Description
The performance of the Planck instruments in space is enabled by their
low operating temperatures, 20 K for LFI and 0.1 K for HFI, achieved
through a combination of passive radiative cooling and three active
mechanical coolers. The scientific requirement for very broad frequency
coverage led to two detector technologies with widely different
temperature and cooling needs. Active coolers could satisfy these needs;
a helium cryostat, as used by previous cryogenic space missions (IRAS,
COBE, ISO, Spitzer, AKARI), could not. Radiative cooling is provided by
three V-groove radiators and a large telescope baffle. The active
coolers are a hydrogen sorption cooler (<20 K), a 4He
Joule-Thomson cooler (4.7 K), and a 3He-4He
dilution cooler (1.4 K and 0.1 K). The flight system was at ambient
temperature at launch and cooled in space to operating conditions. The
HFI bolometer plate reached 93 mK on 3 July 2009, 50 days after launch.
The solar panel always faces the Sun, shadowing the rest of Planck,
andoperates at a mean temperature of 384 K. At the other end of the
spacecraft, the telescope baffle operates at 42.3 K and the telescope
primary mirror operates at 35.9 K. The temperatures of key parts of the
instruments are stabilized by both active and passive methods.
Temperature fluctuations are driven by changes in the distance from the
Sun, sorption cooler cycling and fluctuations in gas-liquid flow, and
fluctuations in cosmic ray flux on the dilution and bolometer plates.
These fluctuations do not compromise the science data.
Related projects
Anisotropy of the Cosmic Microwave Background
The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present
Rafael
Rebolo López