Bibcode
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bethermin, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S. et al.
Bibliographical reference
Astronomy and Astrophysics, Volume 571, id.A18, 24 pp.
Advertised on:
11
2014
Journal
Citations
149
Refereed citations
138
Description
The multi-frequency capability of the Planck satellite provides
information both on the integrated history of star formation (via the
cosmic infrared background, or CIB) and on the distribution of dark
matter (via the lensing effect on the cosmic microwave background, or
CMB). The conjunction of these two unique probes allows us to measure
directly the connection between dark and luminous matter in the high
redshift (1 ≤ z ≤ 3) Universe. We use a three-point statistic
optimized to detect the correlation between these two tracers, using
lens reconstructions at 100, 143, and 217 GHz, together with CIB
measurements at 100-857 GHz. Following a thorough discussion of possible
contaminants and a suite of consistency tests, we report the first
detection of the correlation between the CIB and CMB lensing. The well
matched redshift distribution of these two signals leads to a detection
significance with a peak value of 42/19σ (statistical/statistical
+ systematics) at 545 GHz and a correlation as high as 80% across these
two tracers. Our full set of multi-frequency measurements (both CIB
auto- and CIB-lensing cross-spectra) are consistent with a simple
halo-based model, with a characteristic mass scale for the halos hosting
CIB sources of log10(M/M⊙) = 10.5 ±
0.6. Leveraging the frequency dependence of our signal, we isolate the
high redshift contribution to the CIB, and constrain the star formation
rate (SFR) density at z ≥ 1. We measure directly the SFR density with
around 2σ significance for three redshift bins between z = 1 and
7, thus opening a new window into the study of the formation of stars at
early times.
Related projects
Anisotropy of the Cosmic Microwave Background
The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present
Rafael
Rebolo López