Bibcode
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A. et al.
Bibliographical reference
Astronomy and Astrophysics, Volume 571, id.A15, 60 pp.
Advertised on:
11
2014
Journal
Citations
639
Refereed citations
575
Description
This paper presents the Planck 2013 likelihood, a complete statistical
description of the two-point correlation function of the CMB temperature
fluctuations that accounts for all known relevant uncertainties, both
instrumental and astrophysical in nature. We use this likelihood to
derive our best estimate of the CMB angular power spectrum from Planck
over three decades in multipole moment, ℓ, covering 2 ≤ ℓ
≤ 2500. The main source of uncertainty at ℓ ≲ 1500 is cosmic
variance. Uncertainties in small-scale foreground modelling and
instrumental noise dominate the error budget at higher ℓs. For
ℓ< 50, our likelihood exploits all Planck frequency channels from
30 to 353 GHz, separating the cosmological CMB signal from diffuse
Galactic foregrounds through a physically motivated Bayesian component
separation technique. At ℓ ≥ 50, we employ a correlated Gaussian
likelihood approximation based on a fine-grained set of angular
cross-spectra derived from multiple detector combinations between the
100, 143, and 217 GHz frequency channels, marginalising over power
spectrum foreground templates. We validate our likelihood through an
extensive suite of consistency tests, and assess the impact of residual
foreground and instrumental uncertainties on the final cosmological
parameters. We find good internal agreement among the high-ℓ
cross-spectra with residuals below a few μK2 at ℓ
≲ 1000, in agreement with estimated calibration uncertainties. We
compare our results with foreground-cleaned CMB maps derived from all
Planck frequencies, as well as with cross-spectra derived from the 70
GHz Planck map, and find broad agreement in terms of spectrum residuals
and cosmological parameters. We further show that the best-fit
ΛCDM cosmology is in excellent agreement with preliminary
PlanckEE and TE polarisation spectra. We find that the standard
ΛCDM cosmology is well constrained by Planck from the
measurements at ℓ ≲ 1500. One specific example is the spectral
index of scalar perturbations, for which we report a 5.4σ
deviation from scale invariance, ns = 1. Increasingthe
multipole range beyond ℓ ≃ 1500 does not increase our accuracy
for the ΛCDM parameters, but instead allows us to study
extensions beyond the standard model. We find no indication of
significant departures from the ΛCDM framework. Finally, we
report a tension between the Planck best-fit ΛCDM model and the
low-ℓ spectrum in the form of a power deficit of 5-10% at ℓ
≲ 40, with a statistical significance of 2.5-3σ. Without a
theoretically motivated model for this power deficit, we do not
elaborate further on its cosmological implications, but note that this
is our most puzzling finding in an otherwise remarkably consistent data
set.
Related projects
Anisotropy of the Cosmic Microwave Background
The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present
Rafael
Rebolo López