Bibcode
Planck Collaboration; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cappellini, B.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chen, X.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falvella, M. C.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Kangaslahti, P.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Knoche, J. et al.
Bibliographical reference
Astronomy and Astrophysics, Volume 571, id.A2, 25 pp.
Advertised on:
11
2014
Journal
Citations
79
Refereed citations
75
Description
We describe the data processing pipeline of the Planck Low Frequency
Instrument (LFI) data processing centre (DPC) to create and characterize
full-sky maps based on the first 15.5 months of operations at 30, 44,
and 70 GHz. In particular, we discuss the various steps involved in
reducing the data, from telemetry packets through to the production of
cleaned, calibrated timelines and calibrated frequency maps. Data are
continuously calibrated using the modulation induced on the mean
temperature of the cosmic microwave background radiation by the proper
motion of the spacecraft. Sky signals other than the dipole are removed
by an iterative procedure based on simultaneous fitting of calibration
parameters and sky maps. Noise properties are estimated from
time-ordered data after the sky signal has been removed, using a
generalized least squares map-making algorithm. A destriping code
(Madam) is employed to combine radiometric data and pointing information
into sky maps, minimizing the variance of correlated noise. Noise
covariance matrices, required to compute statistical uncertainties on
LFI and Planck products, are also produced. Main beams are estimated
down to the ≈- 20 dB level using Jupiter transits, which are also
used for the geometrical calibration of the focal plane.
Related projects
Anisotropy of the Cosmic Microwave Background
The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present
Rafael
Rebolo López