The impact of galaxy formation on the total mass, mass profile and abundance of haloes

Velliscig, M.; van Daalen, Marcel P.; Schaye, Joop; McCarthy, Ian G.; Cacciato, Marcello; Le Brun, Amandine M. C.; Dalla Vecchia, C.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 442, Issue 3, p.2641-2658

Advertised on:
8
2014
Number of authors
7
IAC number of authors
1
Citations
154
Refereed citations
147
Description
We use cosmological hydrodynamical simulations to investigate how the inclusion of physical processes relevant to galaxy formation (star formation, metal-line cooling, stellar winds, supernovae and feedback from active galactic nuclei, AGN) change the properties of haloes, over four orders of magnitude in mass. We find that gas expulsion and the associated dark matter (DM) expansion induced by supernova-driven winds are important for haloes with masses M200 ≲ 1013 M⊙, lowering their masses by up to 20 per cent relative to a DM-only model. AGN feedback, which is required to prevent overcooling, has a significant impact on halo masses all the way up to cluster scales (M200 ˜ 1015 M⊙). Baryon physics changes the total mass profiles of haloes out to several times the virial radius, a modification that cannot be captured by a change in the halo concentration. The decrease in the total halo mass causes a decrease in the halo mass function of about 20 per cent. This effect can have important consequences for the abundance matching technique as well as for most semi-analytic models of galaxy formation. We provide analytic fitting formulae, derived from simulations that reproduce the observed baryon fractions, to correct halo masses and mass functions from DM-only simulations. The effect of baryon physics (AGN feedback in particular) on cluster number counts is about as large as changing the cosmology from Wilkinson Microwave Anisotropy Probe 7 to Planck, even when a moderately high-mass limit of M500 ≈ 1014 M⊙ is adopted. Thus, for precision cosmology the effects of baryons must be accounted for.
Related projects
Abell 370 is located approximately 4 billion light-years away in the constellation Cetus, the Sea Monster
Galaxy Evolution in Clusters of Galaxies
Galaxies in the universe can be located in different environments, some of them are isolated or in low density regions and they are usually called field galaxies. The others can be located in galaxy associations, going from loose groups to clusters or even superclusters of galaxies. One of the foremost challenges of the modern Astrophysics is to
Jairo
Méndez Abreu