Bibcode
Natoli, P.; Ashdown, M.; Banerji, R.; Borrill, J.; Buzzelli, A.; de Gasperis, G.; Delabrouille, J.; Hivon, E.; Molinari, D.; Patanchon, G.; Polastri, L.; Tomasi, M.; Bouchet, F. R.; Henrot-Versillé, S.; Hoang, D. T.; Keskitalo, R.; Kiiveri, K.; Kisner, T.; Lindholm, V.; McCarthy, D.; Piacentini, F.; Perdereau, O.; Polenta, G.; Tristram, M.; Achucarro, A.; Ade, P.; Allison, R.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Bartlett, J.; Bartolo, N.; Basak, S.; Baumann, D.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Cai, Z.-Y.; Calvo, M.; Carvalho, C.-S.; Castellano, M. G.; Challinor, A.; Chluba, J.; Clesse, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; de Bernardis, P.; De Zotti, G.; Di Valentino, E.; Diego, J.-M.; Errard, J.; Feeney, S.; Fernandez-Cobos, R.; Finelli, F.; Forastieri, F.; Galli, S.; Genova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Gruppuso, A.; Hagstotz, S.; Hanany, S.; Handley, W.; Hernandez-Monteagudo, C.; Hervías-Caimapo, C.; Hills, M.; Keihänen, E.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Lesgourgues, J.; Lewis, A.; Liguori, M.; López-Caniego, M.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martinez-González, E.; Martins, C. J. A. P.; Masi, S.; Matarrese, S.; Melchiorri, A.; Melin, J.-B.; Migliaccio, M.; Monfardini, A.; Negrello, M.; Notari, A.; Pagano, L.; Paiella, A. et al.
Bibliographical reference
Journal of Cosmology and Astroparticle Physics, Issue 04, article id. 022 (2018).
Advertised on:
4
2018
Citations
16
Refereed citations
16
Description
We present an analysis of the main systematic effects that could impact
the measurement of CMB polarization with the proposed CORE space
mission. We employ timeline-to-map simulations to verify that the CORE
instrumental set-up and scanning strategy allow us to measure sky
polarization to a level of accuracy adequate to the mission science
goals. We also show how the CORE observations can be processed to
mitigate the level of contamination by potentially worrying systematics,
including intensity-to-polarization leakage due to bandpass mismatch,
asymmetric main beams, pointing errors and correlated noise. We use
analysis techniques that are well validated on data from current
missions such as Planck to demonstrate how the residual contamination of
the measurements by these effects can be brought to a level low enough
not to hamper the scientific capability of the mission, nor
significantly increase the overall error budget. We also present a
prototype of the CORE photometric calibration pipeline, based on that
used for Planck, and discuss its robustness to systematics, showing how
CORE can achieve its calibration requirements. While a fine-grained
assessment of the impact of systematics requires a level of knowledge of
the system that can only be achieved in a future study phase, the
analysis presented here strongly suggests that the main areas of concern
for the CORE mission can be addressed using existing knowledge,
techniques and algorithms.
Related projects
Anisotropy of the Cosmic Microwave Background
The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present
Rafael
Rebolo López