Bibcode
Finelli, F.; Bucher, M.; Achúcarro, A.; Ballardini, M.; Bartolo, N.; Baumann, D.; Clesse, S.; Errard, J.; Handley, W.; Hindmarsh, M.; Kiiveri, K.; Kunz, M.; Lasenby, A.; Liguori, M.; Paoletti, D.; Ringeval, C.; Väliviita, J.; van Tent, B.; Vennin, V.; Ade, P.; Allison, R.; Arroja, F.; Ashdown, M.; Banday, A. J.; Banerji, R.; Bartlett, J. G.; Basak, S.; de Bernardis, P.; Bersanelli, M.; Bonaldi, A.; Borril, J.; Bouchet, F. R.; Boulanger, F.; Brinckmann, T.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C. S.; Castellano, G.; Challinor, A.; Chluba, J.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; D'Amico, G.; Delabrouille, J.; Desjacques, V.; De Zotti, G.; Diego, J. M.; Di Valentino, E.; Feeney, S.; Fergusson, J. R.; Fernandez-Cobos, R.; Ferraro, S.; Forastieri, F.; Galli, S.; García-Bellido, J.; de Gasperis, G.; Génova-Santos, R. T.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Hazra, D. K.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Hu, B.; Kisner, T.; Kitching, T.; Kovetz, E. D.; Kurki-Suonio, H.; Lamagna, L.; Lattanzi, M.; Lesgourgues, J.; Lewis, A.; Lindholm, V.; Lizarraga, J.; López-Caniego, M.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martínez-González, E.; Martins, C. J. A. P.; Masi, S.; McCarthy, D.; Matarrese, S.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Negrello, M.; Notari, A.; Oppizzi, F. et al.
Bibliographical reference
Journal of Cosmology and Astroparticle Physics, Issue 04, article id. 016 (2018).
Advertised on:
4
2018
Citations
169
Refereed citations
140
Description
We forecast the scientific capabilities to improve our understanding of
cosmic inflation of CORE, a proposed CMB space satellite submitted in
response to the ESA fifth call for a medium-size mission opportunity.
The CORE satellite will map the CMB anisotropies in temperature and
polarization in 19 frequency channels spanning the range 60–600
GHz. CORE will have an aggregate noise sensitivity of 1.7 μKṡ
arcmin and an angular resolution of 5' at 200 GHz. We explore the impact
of telescope size and noise sensitivity on the inflation science return
by making forecasts for several instrumental configurations. This study
assumes that the lower and higher frequency channels suffice to remove
foreground contaminations and complements other related studies of
component separation and systematic effects, which will be reported in
other papers of the series "Exploring Cosmic Origins with CORE." We
forecast the capability to determine key inflationary parameters, to
lower the detection limit for the tensor-to-scalar ratio down to the
10‑3 level, to chart the landscape of single field
slow-roll inflationary models, to constrain the epoch of reheating, thus
connecting inflation to the standard radiation-matter dominated Big Bang
era, to reconstruct the primordial power spectrum, to constrain the
contribution from isocurvature perturbations to the
10‑3 level, to improve constraints on the cosmic string
tension to a level below the presumptive GUT scale, and to improve the
current measurements of primordial non-Gaussianities down to the
fNLlocal < 1 level. For all the models
explored, CORE alone will improve significantly on the present
constraints on the physics of inflation. Its capabilities will be
further enhanced by combining with complementary future cosmological
observations.
Related projects
Anisotropy of the Cosmic Microwave Background
The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present
Rafael
Rebolo López