Exploring the circumstellar environment of the young eruptive star V2492 Cygni

Vida, K.; Turner, N. J.; Tóth, I.; Szing, A.; Szalai, N.; Szakáts, R.; Sárneczky, K.; Pál, A.; Moór, A.; Meszaros, Sz.; Marton, G.; Kun, M.; Kovács, T.; Kelemen, J.; Henning, Th.; Farkas, A.; Szegedi-Elek, E.; Carnerero, M. I.; Balog, Z.; Arévalo, M. J.; Acosta-Pulido, J. A.; Ábrahám, P.; Kóspál, Á.
Bibliographical reference

Astronomy and Astrophysics, Volume 551, id.A62, 12 pp.

Advertised on:
3
2013
Number of authors
23
IAC number of authors
4
Citations
26
Refereed citations
24
Description
Context. V2492 Cyg is a young eruptive star that went into outburst in 2010. The near-infrared color changes observed since the outburst peak suggest that the source belongs to a newly defined sub-class of young eruptive stars, where time-dependent accretion and variable line-of-sight extinction play a combined role in the flux changes. Aims: In order to learn about the origin of the light variations and to explore the circumstellar and interstellar environment of V2492 Cyg, we monitored the source at ten different wavelengths, between 0.55 μm and 2.2 μm from the ground and between 3.6 μm and 160 μm from space. Methods: We analyze the light curves and study the color-color diagrams via comparison with the standard reddening path. We examine the structure of the molecular cloud hosting V2492 Cyg by computing temperature and optical depth maps from the far-infrared data. Results: We find that the shapes of the light curves at different wavelengths are strictly self-similar and that the observed variability is related to a single physical process, most likely variable extinction. We suggest that the central source is episodically occulted by a dense dust cloud in the inner disk and, based on the invariability of the far-infrared fluxes, we propose that it is a long-lived rather than a transient structure. In some respects, V2492 Cyg can be regarded as a young, embedded analog of UX Orionis-type stars. Conclusions: The example of V2492 Cyg demonstrates that the light variations of young eruptive stars are not exclusively related to changing accretion. The variability provided information on an azimuthally asymmetric structural element in the inner disk. Such an asymmetric density distribution in the terrestrial zone may also have consequences for the initial conditions of planet formation. This work is based on observations made with the Herschel Space Observatory and with the Spitzer Space Telescope. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.Tables 1 and 2 are available in electronic form at http://www.aanda.org
Related projects
Representación de la variable cataclísmica SS Cygni (Chris Moran)
Binary Stars
The study of binary stars is essential to stellar astrophysics. A large number of stars form and evolve within binary systems. Therefore, their study is fundamental to understand stellar and galactic evolution. Particularly relevant is that binary systems are still the best source of precise stellar mass and radius measurements. Research lines
Pablo
Rodríguez Gil
spectrum of mercury lamp
Chemical Abundances in Stars
Stellar spectroscopy allows us to determine the properties and chemical compositions of stars. From this information for stars of different ages in the Milky Way, it is possible to reconstruct the chemical evolution of the Galaxy, as well as the origin of the elements heavier than boron, created mainly in stellar interiors. It is also possible to
Carlos
Allende Prieto