ESPRESSO mass determination of TOI-263b: an extreme inhabitant of the brown dwarf desert

Palle, E.; Luque, R.; Zapatero Osorio, M. R.; Parviainen, H.; Ikoma, M.; Tabernero, H. M.; Zechmeister, M.; Mustill, A. J.; Bejar, V. S. J.; Narita, N.; Murgas, F.
Bibliographical reference

Astronomy and Astrophysics

Advertised on:
6
2021
Number of authors
11
IAC number of authors
6
Citations
18
Refereed citations
16
Description
The TESS mission has reported a wealth of new planetary systems around bright and nearby stars amenable for detailed characterizations of planet properties and atmospheres. However, not all interesting TESS planets orbit around bright host stars. TOI-263 b is a validated ultra-short-period substellar object in a 0.56-day orbit around a faint (V = 18.97) M 3.5 dwarf star. The substellar nature of TOI-263 b was explored using multicolor photometry: a true radius of 0.87 ± 0.21 RJ was determined, establishing TOI-263 b 's nature as somewhere between an inflated Neptune and a brown dwarf. The orbital period-radius parameter space occupied by TOI-263 b is quite unique, which prompted a further characterization of its true nature. Here, we report radial velocity measurements of TOI-263 obtained with three VLT units and the ESPRESSO spectrograph to retrieve the mass of TOI-263 b. We find that TOI-263 b is a brown dwarf with a mass of 61.6 ± 4.0 MJup. Additionally, the orbital period of the brown dwarf is found to be synchronized with the rotation period of the host star, and the system is found to be relatively active, possibly revealing a star-brown dwarf interaction. All these findings suggest that the system's formation history might be explained via disk fragmentation and a later migration to close-in orbits. If the system is found to be unstable, TOI-263 will be an excellent target to test the migration mechanisms before the brown dwarf becomes "engulfed" by its parent star.
Related projects
Discovery of a system of super-Earths orbiting the star HD 176986 with about 5.7 and 9.2 Earth masses.
Very Low Mass Stars, Brown Dwarfs and Planets
Our goal is to study the processes that lead to the formation of low mass stars, brown dwarfs and planets and to characterize the physical properties of these objects in various evolutionary stages. Low mass stars and brown dwarfs are likely the most numerous type of objects in our Galaxy but due to their low intrinsic luminosity they are not so
Rafael
Rebolo López
Projects' name image
Exoplanets and Astrobiology
The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
Enric
Pallé Bago